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ABSTRACT

We investigate the rotational dynamics of disk accretion around a strongly magnetized neutron star with an
aligned dipole field. The magnetospheric field is assumed to thread the disk plasma both inside and outside the
corotation radius. As a result of disk-star interaction, the magnetic torque on the disk affects the structure of
accretion flow to yield the observed spin-up or spin-down rates for a source of given fastness, magnetic field
strength, and mass accretion rate. Within the model we obtain a prescription for the dynamical viscosity of such
magnetically modified solutions for a Keplerian disk. We then use this prescription to find a model solution for
the rotation rate profile throughout the entire disk, including the non-Keplerian inner disk. We find that the
non-Keplerian angular velocity transition region is not necessarily narrow for a source of given spin state. The
boundary layer approximation, as in the standard magnetically threaded disk model, holds only in the case of
dynamical viscosity decreasing all the way to the innermost edge of the disk. These results are applied to several
observed disk-fed X-ray pulsars that have exhibited quasi-periodic oscillations (QPOs). The QPO frequencies
provide a constraint on the fastness parameter and enable one to determine uniquely the width of the angular
velocity transition zone for each source within model assumptions. We discuss the implications of these results on
the value of the critical fastness parameter for a magnetized star in spin equilibrium. Applications of our model are
also made with relevant parameters from recent numerical simulations of quasi-stationary disk–magnetized star
interactions.

Subject headinggs: accretion, accretion disks — magnetic fields — stars: magnetic fields — stars: neutron —
X-rays: stars

1. INTRODUCTION

The evidence for the interaction between a rotating magne-
tized star and a surrounding accretion disk emerges in a wide
variety of astrophysical systems, such as X-ray binary pulsars
(Joss &Rappaport 1984), magnetic white dwarfs in cataclysmic
variables (Warner 1995), and T Tauri stars (Basri & Bertout
1989). Detailed modeling of this interaction would contribute
to our understanding of many problems, such as the time rate of
change in the pulse periods of the disk-fed neutron stars and the
quasi-periodic oscillations (QPOs) observed in some sources
(Alpar & Shaham 1985; Aly & Kuijpers 1990).

In early investigations (Scharlemann 1978; Ghosh & Lamb
1978; Aly 1980), the degree of diamagnetism presumed for the
disk plasma has led to very different magnetic field config-
urations. If the disk is fully diamagnetic, then it excludes the
stellar field completely and the accretion flow from the disk
midplane to the surface of the star is assumed to start within a
very narrow region near the inner-disk radius (Ichimaru 1978).
If the accreting plasma has a nonzero resistivity, then the stellar
field may penetrate the disk and thread it in a broad zone via the
Kelvin-Helmholtz instability, magnetic field reconnection with
small-scale fields in the disk, and turbulent diffusion (Ghosh &
Lamb 1979, hereafter GL79; Wang 1987, hereafter W87). One
of the most important predictions of the magnetically threaded
disk (MTD) model is that the star can spin down while matter
accretes onto it.

In the MTD model of GL79, the star-disk interaction region
consists of two distinct parts. In a broad outer transition zone,
where the angular velocity is Keplerian, the effective viscous
stress is dominant compared to magnetic stress associated with
the twisted field lines. The disk matter is brought into corota-
tion with the neutron star only in a narrow inner transition zone
or boundary layer within which magnetic stress dominates over
viscous stress. The disk resistivity is very high, so that the
magnetic diffusivity exceeds the turbulent viscosity by several
orders of magnitude. The coronal plasma outside the disk is
force-free, and the disk is threaded over a large range of radii
by magnetic field lines that close through the neutron star.

The study of field line twisting in a force-free magnetosphere
has revealed that a closed field line tends to inflate and evolve
into an open one, breaking the disk-star link (Lynden-Bell &
Boily 1994; Lovelace et al. 1995, hereafter LRBK95). The
strong outflows associated with the opening of magnetic field
lines were reported in several two-dimensional magnetohy-
drodynamic (MHD) simulations (Hayashi et al. 1996; Miller
& Stone 1997; Goodson et al. 1997, 1999). Although these
numerical studies indicated that the accretion flow around a
strongly magnetized object can be nonstationary and episodic
in character, the recent MHD simulations by Romanova et al.
(2002, hereafter RUKL02) showed that quiescent accretion
regimes are also possible, provided a matter-dominated, dif-
ferentially rotating corona instead of a magnetically dominated,
force-free one is used as an equilibrium initial condition to
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examine quasi-stationary situations. The main reason for ob-
taining different results in the above-mentioned simulations is
that in the case of a corona corotating with the central star (or
nonrotating corona), the initial discontinuity in the angular
velocity between the Keplerian disk and the magnetosphere
leads to huge field twisting on the corona-disk boundary. This
gives rise to the generation of very large toroidal field and to
strong magnetic braking of the disk. A differentially rotating,
matter-dominated corona is an appropriate initial condition to
avoid this discontinuity (Romanova et al. 1998). It reduces the
initial magnetic braking of the disk and allows one to investi-
gate the quiescent phase of disk-star interaction in long-term
numerical simulations (RUKL02).

The physical mechanism responsible for the disruption of
the inner region of an axisymmetric disk around a magnetic
rotator was investigated by a number of authors (Brandenburg
& Campbell 1998; Campbell & Heptinstall 1998, hereafter
CH98). Integrating the relevant MHD equations radially from
the weakly magnetic outer-disk regions inward, they found a
vertically disrupted and viscously unstable disk solution inside
a critical radius. They also argued that the viscous instability
associated with the elevated temperature in the inner-disk re-
gions is due to magnetically enhanced viscous dissipation,
which causes the vertical equilibrium to break down when the
radiation pressure becomes significant. We point out in the
present paper (see xx 3 and 4) that the viscous instability pro-
posed by these authors as the mechanism responsible for the
truncation of the inner disk is a consequence of choosing
Keplerian rotation for the disk plasma throughout the accretion
flow, artificial in the sense that the angular motion could easily
be modified by the huge viscous stress estimated for the inner
parts of the disk.

For a disk around a nonmagnetized star, Glatzel (1992)
solved this problem without making the assumption that the
rotation rate is Keplerian except in a very narrow boundary
layer. In this paper we present the analogous solution for the
magnetic case, allowing for non-Keplerian rotation in the in-
ner disk. Numerical simulations by RUKL02 have also shown
non-Keplerian rotation in the magnetically braked inner re-
gions of the disk. We consider an axisymmetric thin disk
threaded by the magnetic dipole field of an aligned rotator and
explore the effect of the rotating magnetosphere on the angular
velocity profile of the disk plasma. In x 2 we introduce the
relevant MHD equations to derive a dimensionless function for
the vertically integrated dynamical viscosity. In x 3 we discuss
the behavior of this function in connection with the net torque
acting on the central star. In x 4 we employ the dynamical vis-
cosity and solve the equation of angular momentum conser-
vation for the rotation profile of a disk around a neutron star in
spin equilibrium without making a boundary layer approxi-
mation. We apply our model to several X-ray binary pulsars
that have exhibited QPOs. Using the observed periods, X-ray
luminosities, QPO frequencies, and spin-up or spin-down rates
of these sources, we obtain constraints on the model parame-
ters within the beat frequency model and estimate the appro-
priate disk rotation curve for each source. We find that the
inner-disk rotation rate adapts to Keplerian rotation in the outer
disk through a transition zone whose width and rotation rate
profile are such as to accommodate the mass accretion rate,
rotation period, and magnetic moment of the central object and
to yield the observed spin-up or spin-down rates. In x 5 we
concentrate on the qualitative similarities between our model
and the results of numerical simulations by RUKL02 on the
disk structure. Using their numerical data, we roughly estimate

the radius where the disk structure is significantly changed and
magnetic braking is efficient. We summarize and discuss our
results in x 6.

2. BASIC EQUATIONS

The steady-state equation of conservation of angular mo-
mentum for an axisymmetric magnetized disk around a neutron
star having a dipole moment aligned with its rotation axis can
be written in cylindrical coordinates (r, �, z) as
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where � is the coefficient of viscosity. The conservation of
mass for a steady-state, axisymmetric disk is given by the
continuity equation,
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which can be vertically integrated to yield the constant mass
influx condition,
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provided �vz is negligible at z ¼ �H , a valid assumption ex-
cept for the case of strong winds or magnetically driven out-
flows. Here, Ṁ is the constant mass inflow rate and H is the
half-thickness of the disk.
In a geometrically thin accretion disk (i.e., HTr), the an-

gular momentum balance (eq. [1]) can be approximated as
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where v� ¼ �r is used and the r�-component of the magnetic
stress is neglected in comparison with the last term in equa-
tion (1), for the ratio of their magnitudes in the thin-disk limit
gives
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provided Br=Bzj jTr=H , a condition that can only be violated
for extremely large disk conductivities.
The vertically averaged form of the angular momentum

(eq. [4]), together with the use of equation (3), is finally ob-
tained as

d
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where Bþ
� (r) � B�(r; z ¼ H ) ¼ �B�(r; z ¼ �H ) because of

the field antisymmetry and � is the surface density function
defined by

�(r) ¼
Z H

�H

� (r; z) dz ¼ 2�H ; ð7Þ
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where � denotes simply the vertically averaged density. The
last term in equation (1) was also identified as the dominant
magnetic term in the early derivation of equation (6) by
Campbell (1992) for steady disks and by Lovelace et al. (1994)
in a form appropriate for time-dependent disks with outbursts.

The vertical component of the magnetic field threading the
disk can be expressed, in general, as

Bz(r) ¼ �s (r)�� r
�3; ð8Þ

where �� ¼ 1=2ð ÞB�R
3
� is the dipole moment of the neutron star

of radius R� in terms of its polar surface field strength B� and
s(r) represents a screening coefficient that accounts for the
effect of induced currents on the pure stellar dipole field in a
partially diamagnetic disk. In a self-consistent treatment, the
radial dependence of s must be properly found from a detailed
analysis of the magnetospheric current system in the corona.
The modeling of such a disk corona star system is beyond the
scope of the present study. In this work, we rather assume that
the vertical component of the magnetic field threading the disk
can be represented by

Bz(r) ¼ �seA
��
r3

; ð9Þ

where seA is an effective screening coefficient taken to be a
constant over a wide range of radii (Wang 1995).

The azimuthal component of the magnetic field at the sur-
face of a disk in vertical hydrostatic equilibrium (i.e., vz ¼ 0)
can be estimated from the toroidal component of the induction
equation, which can be written under the assumptions of steady
state and axisymmetry as
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where � is the magnetic diffusivity of the disk. Assuming that
all quantities change on a length scale r in the radial direction
and H in the vertical direction, the significance of the second
term compared with the first term in equation (10) can be es-
timated as
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provided we have Brj jP Bzj j. The last term in equation (10)
dominates over the fourth and third terms:
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provided � k vrj jH is satisfied. The consistency of equation (11)
with equation (13) can be justified using the poloidal compo-
nent of the induction equation, which can be written as
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where the disk is assumed to be in vertical hydrostatic equi-
librium, i.e., vz ¼ 0. For very small radial inflow velocities, i.e.,
vrT�=r, equation (14) yields Brj j � H=rð Þ Bzj j and the dis-
tortion of the external field due to accretion becomes negligi-
ble. In this case the estimates in equations (11) and (12) are
both O½(H=r)2�T1, while the estimate in equation (13) is
smaller than O½(H=r)2� by the factor vr r=�. If, on the other
hand, Brj jP Bzj j, as is likely when the field is distorted, then
@r Bzj jT @z Brj j and we obtain

Bþ
r ¼ � vr H

�
Bz ð15Þ

from the vertical integration of equation (14), where Bþ
r (r) �

Br(r; z ¼ H ) ¼ �Br(r; z ¼ �H ) following the field antisym-
metry (see Lovelace et al. 1994; see also LRBK95). When
equation (15) holds, approximations (11) and (13) are both
PO(H=r)T1.

Taking the conditions (11), (12), and (13) to be satisfied,
the toroidal component of the induction equation (10) can be
safely reduced to
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The vertical gradient of angular velocity depends on the scale
height over which the plasma is brought into corotation with
the neutron star. In the case of a force-free magnetosphere
outside the disk, this scale height can be estimated as H, the
half-thickness of the disk, since the magnetic energy density
becomes much greater than the kinetic energy density of the
plasma for zj j � H. The resulting twisting of field loops due to
this huge vertical shear gradient may lead to an open field line
configuration unless @�=@zj j < �� � �j j=H . The recent time-
dependent simulations by RUKL02 have shown that the field
line opening is strongly suppressed for a relatively dense co-
rona outside the disk. Assuming that the vertical shear along a
flux tube linking the star and the disk is reduced by the inertial
effect of a corona, the integration of equation (16) over z can
be approximated as

Bþ
� ¼ �r �� � �ð ÞH��1Bz; ð17Þ

where the transition from the angular velocity of the disk
plasma, � , to the rotational rate of the neutron star, ��, takes
place within an effective scale height of ��1H with � < 1 (see
Campbell 1992; see also LRBK95 for other derivations of
eq. [17]). Here, � is a shear reduction factor that may arise from
a differentially rotating corona to result in a small field twist at
the surface of the disk. Even if the corona is nearly force-free, it
cannot be current-free. As the magnetic torque is transmitted to
the neutron star by the poloidal currents flowing across the disk
surface through the magnetosphere, the rigid-body rotation of
the corona may not be realized (see W87; see also CH98 for
a similar shear reduction factor).

We consider a specific disk region (e.g., a narrow boundary
layer of width �r PHTr) where the contribution from the
radial gradient terms in equation (10) is not negligible. In this
case, the angular velocity transition from � to �� occurs within
�r. The approximate balance between the second term (field
generating) and the third (advection) and fourth (dissipation)
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terms in equation (10) yields a crude estimation for the toroidal
field component,

Bþ
� � r �� � �ð Þ �rð Þ��1Bþ

r � r �� � �ð ÞH��1Bz; ð18Þ

provided the width of the boundary layer is assumed to be the
electromagnetic screening length for the poloidal magnetic
field, i.e., �r ’ �=vr (see GL79). The vertical gradient terms
are not taken into account for simplicity in the radial integra-
tion of equation (10). The last step in equation (18) follows
from Bþ

r =Bz � H=�r according to equation (14). This analysis
indicates that the form of the expression for the azimuthal field
component in equation (17) may generally be applicable for
the entire disk regardless of the radial extension of the angular
velocity transition zone.

In the thin-disk limit, the vertically integrated forms of the r-
and z-components of the momentum equation can be written as
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where cs ¼ (P=�)1=2 is the speed of sound in terms of the mid-
plane temperature of the disk, and �K is the Keplerian angular
velocity given by

�K(r)¼
GM�

r 3

� �1=2

; ð21Þ

whereM� is the mass of the neutron star. The magnetic tension
force in equation (19) is the main agent responsible for the
deviation of�(r) from�K(r) if the accretion disk is thin and the
poloidal magnetic field varies on a length scale r. The vertical
equilibrium of a magnetically threaded thin disk is given by
equation (20), where the gas pressure is balanced by the mag-
netic pressure of the horizontal field components in addition
to the vertical component of gravity. Using equations (19) and
(20), it is possible to make an order-of-magnitude estimate for
the sound speed. In the absence of a strong global magnetic
field, the rotational profile is nearly Keplerian and cs ’ �KH .
The rotation of the disk matter at a sub-Keplerian rate can only
be realized, provided we have

Bþ
r

		 		B
4��

P �2
KHr ð22Þ

in equation (19) with Bzj j � B. If the magnetic diffusivity is
turbulent in nature, then the radial component of the magnetic
field can be significant, i.e., Bþ

r

		 		 P B, and the vertical equi-
librium (eq. [20]) is satisfied by the balance between the gas
and magnetic pressures alone,

c2s �
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4��
P �2

KHr; ð23Þ

since the gravity term is relatively small in a thin disk, i.e.,
�2

KH
2T�2

KHr.

After equation (23), we propose the following prescription
for the sound speed:

c2s ¼ 	(r)� 2
KHr; ð24Þ

where 	(r) < 1 is a dimensionless factor of unknown radial
dependence. Its explicit form can only be deduced from a de-
tailed analysis of the field configuration and density distribu-
tion in the disk.
In this work, we assume that the magnetic diffusivity of

the disk is of the same physical origin (i.e., turbulence) as the
viscosity, and we adopt the original 
 formalism (Shakura &
Sunyaev 1973, hereafter SS73) to write

� ¼ 
d

c2s
�K

; ð25Þ

where 
d P 1 is a dimensionless numerical factor.
Combining equations (24) and (25), the azimuthal field

component at the disk surface (see eq. [17]) is simplified to

Bþ
� ¼ �� �� � �ð Þ��1

K Bz; ð26Þ

where �� � �=	
 d will be treated as a constant for simplicity
(see, e.g., Livio & Pringle 1992). As we see in x 3, the verti-
cally integrated dynamical viscosity, ��, for a magnetically
threaded disk changes with distance. The radial variation of
�� can be achieved in general, provided both the coefficient
of viscosity � and the surface density � are functions of ra-
dius. As the viscosity � and diffusivity � have the same, turbu-
lent nature by assumption, the magnetic Prandtl number, �=�,
should be of order 1 at different radii of the disk. This also
requires that the parameter 	 should have a radial dependence
in general for self-consistency. In this case, �� would not be
approximated as a constant unless the shear reduction factor �
changes with distance in more or less the same way as 	 does.
Our physical motivation for taking �� as a constant is as fol-
lows. The compressive effect of the magnetic field on the ver-
tical equilibrium of the disk becomes negligible in the weakly
magnetized outer-disk regions. The gas pressure is mainly
balanced by the gravitational force and cs ’ �KH (see eq. [20]).
According to equation (24), this is equivalent to choosing
	(r) � H=r in the outer disk. The resulting toroidal field is
O(r=H )Bz 3Bz unless �(r) � H=r. The shear reduction factor
� is therefore expected to decrease from O(1) at small radii to
O(H=r) at large radii, provided the disk is threaded by the stellar
field lines that are closed and stable at least to some extent
beyond the corotation radius. As there appears to be a correla-
tion between �(r) and 	(r), we approximate their ratio as a
constant throughout the entire disk.
In the absence of a complete theory of the disk-star magnetic

interaction, we do not attempt to obtain a full-disk solution at
this stage; we rather concentrate on the conservation of angular
momentum to treat the dynamics of disk accretion under the
action of an external magnetic field of stellar origin. Using
equation (26), it follows from equation (6) that

d

dr
2���r 3

d�

dr
þ Ṁr 2�

� �
¼ ���r

2 �� � �ð Þ��1
K B2

z ; ð27Þ

which can be solved for the rotation profile, �(r), for a given
vertically integrated dynamical viscosity, ��, if Bz(r) is known.
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3. DYNAMICAL VISCOSITY

In the following, we deal with the angular momentum
balance (see x 2) to derive an expression for the vertically in-
tegrated dynamical viscosity. Before attempting to solve equa-
tion (27), we scale the variable quantities r, ��, and � by their
typical values such that x � r=rin is a dimensionless coordinate
in units of the inner-disk radius rin, where we assume � ¼ ��,
f (x) � 3���=Ṁ is a dimensionless function for the dynamical
viscosity, and !(x) � �=�K(rin) is a dimensionless angular
velocity for the disk plasma. Finally, we use equation (9) for the
screened dipole field to rewrite equation (27) in a nondimen-
sional form:

d

dx

2

3
f (x)x3

d!

dx
þ x2!

� �
¼ �� !� � !ð Þx�5=2; ð28Þ

where !� � ��=�K(rin) ¼ (rco=rin)
�3=2 with the corotation

radius rco ¼ (GM�=�
2
�)

1=3 and � � ��s
2
eA(rA=rin)

7=2 with the
Alfvén radius given by

rA ¼ Ṁ�2=7�4=7
� GM�ð Þ�1=7

’ 3:4 ; 108 cm Ṁ
�2=7
17 �

4=7
�30

M�

1:4 M	

� ��1=7

: ð29Þ

Here, Ṁ17 is the mass accretion rate expressed in units of 1017 g
s�1 and ��30 is the magnetic dipole moment in units of 1030 G
cm3. If the neutron star magnetic field is sufficiently weak for a
given mass accretion rate, e.g., B�P 107 G in equation (29),
then we have rA < R� and the disk may extend down to the
surface of the central object (i.e., rin ¼ R�). For such weakly
magnetized systems, also known as standard 
 -disks (SS73),
we get � ’ 0. The same is true also if the disk plasma is per-
fectly diamagnetic. In the conventional picture of 
 -disks, the
rotation curve is Keplerian throughout the accretion flow ex-
cept in a narrow boundary layer situated at the inner edge of
the disk, where the angular velocity of the plasma changes
from �K(R�) to ��. In a standard thin disk around a nonmag-
netic star, we can integrate equation (28) with � ¼ 0 to find
f (x) ¼ 1� 
x�1=2 using the Keplerian profile, !(x) ¼ x�3=2.
The integration constant 
 here denotes the inflow rate of an-
gular momentum J̇ , across a cylindrical boundary at radius r,
in terms of the angular momentum flux carried by matter onto
the neutron star through the inner edge of the disk, i.e., J̇ ¼

ṀR2

��K(R�). According to the standard approach (Lynden-
Bell & Pringle 1974), there is no viscous torque acting on the
inner disk. This corresponds to 
 ’ 1, and the boundary layer
is extremely thin in extension. However, the angular velocity
transition region is not necessarily narrow, as Glatzel showed
(Glatzel 1992, hereafter G92) if 
 is treated as a free parameter
in f (x), which in turn can be used to solve for the structure of
the accretion flow (Fujimoto 1995). In the present investiga-
tion, we derive a form of vertically integrated dynamical vis-
cosity in a way similar to the work of G92 but generalized to
treat the disk interacting with a magnetic star. In our case,
� 6¼ 0 and the angular momentum exchange between the mag-
netosphere and the disk is not negligible except for sufficiently
large distances from the magnetically braked inner-disk re-
gions. The Keplerian rotation can only be regarded as a par-
ticular solution that can be employed to obtain a prescription
for the dynamical viscosity, which may hold throughout
the accretion flow, provided the angular motion of the inner-
disk plasma can be matched to the rotation rate of the stellar

magnetosphere. The radial integration of equation (28) for a
Keplerian angular velocity profile yields

f (x; �; j; !�) ¼ 1� 2

3
�!� x

�2 þ 1

3
�x�7=2 � jx�1=2; ð30Þ

where j � J̇=Ṁr 2in�K(rin) is the net angular momentum flux
into the neutron star unless there are some other efficient mech-
anisms of angular momentum loss for the disk material, such
as winds associated with the opening of field lines. Although
j here appears to be an arbitrary integration constant, it is the
dimensionless torque applied by the disk on the star, i.e., the
star spins up (or spins down) for j > 0 (or j < 0).

A vertically integrated dynamical viscosity form similar to
the one we consider in equation (30) was derived and used pre-
viously by Brandenburg & Campbell (1998, hereafter BC98)
to solve for the disk structure around strongly magnetic ac-
cretors. These authors, however, assumed j ¼ 0 to ensure that
the disk structure matches that of weakly magnetized accretion
at a sufficiently large radius rout . Adopting �� ¼ Ṁ=3�, that is,
f (x ¼ rout=rin) ¼ 1 as an arbitrary outer boundary condition,
they integrated the relevant MHD equations in the radial di-
rection from the outer-disk regions inward. Note that f ¼ 1 at
large distances whether j ¼ 0 or not. However, the structure at
finite x depends on the relative importance of the terms, and the
value of j will be an important parameter in determining the
structure. BC98 did not attempt to fit their solution to a mag-
netically braked inner accretion flow; they assumed that the
Keplerian rotation holds throughout the disk. Their model im-
plies that the torque on the star is always zero, i.e., j ¼ 0, and
that the angular velocity of the plasma still remains Keplerian
in the inner parts of the disk even though the viscous dissipation
there due to magnetically enhanced viscous stress (see the third
term on the right-hand side of eq. [30]) leads to the divergence
of the disk height as a result of elevated temperature. Both
assumptions are very restrictive and nonphysical in the sense
that the choice of j becomes quite significant at small radii,
although it seems to have no effect on the disk structure at large
radii (see x 4), and the huge viscous dissipation estimated for the
inner-disk regions results from using overestimated angular
frequencies (e.g., Keplerian frequencies) together with a mag-
netically enhanced dynamical viscosity. The last argument can
be made clear if we consider the conservation of energy for a
radiatively efficient disk,

2�T 4
s �

Z H

�H

Qv dz ¼
GM� Ṁ

3�r 3in
x
d!

dx

� �2

f (x; �; j; !�); ð31Þ

where Ts is the effective surface temperature of the disk and
Qv ¼ �� (r@r�)

2 is the viscous dissipation rate per unit volume.
The approximation sign in equation (31) indicates that there
may exist additional sources of heat (e.g., Ohmic dissipation)
other than viscosity in the disk. If the Keplerian assumption,
i.e., !(x) ¼ x�3=2, were valid throughout the entire disk, as in
the work of BC98, then we would certainly find huge tem-
peratures as x ! 1 for sufficiently high � and low !� values
(see, e.g., CH98 for the corresponding values) in the case of
j ¼ 0 (see also eq. [30]).

What we expect to find in steady accretion is that the inner
boundary condition, that is, the fastness of the stellar magne-
tosphere !�, adjusts the rotational disk dynamics for a given
torque j. The quantity � in equation (30), which reflects the
magnetic configuration in the inner disk, is not an independent
parameter. Rather, it is linked intimately to j, and its value can
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be calculated (see x 4) when the angular velocity profile is
determined from equation (28).

The definition of � with rin ¼ !
2=3
� rco yields for a typical

X-ray binary pulsar

� ’ 12��s
2
eA!

�7=3
� Ṁ�1

17 P
�7=3
� �2

�30
M�

1:4 M	

� ��5=3

; ð32Þ

where P� is the spin period of the neutron star. Using the torque
expression, N� ¼ I��̇� ¼ jṀ (GM�rin)

1=2 with a moment of
inertia I� ¼ 2=5ð ÞM�R

2
�, we find

j ’ �0:4!�1=3
� Ṁ�1

17 P
�7=3
� R2

�6
Ṗ�

10�12 s s�1

� �
M�

1:4 M	

� �1=3

;

ð33Þ

where R�6 is the neutron star radius expressed in units of 10
6 cm

and Ṗ� is the time rate of change of the spin period.
We now examine some of the basic features of the dimen-

sionless function we introduced for the dynamical viscosity
(see eq. [30]) before we present various types of rotation pro-
files in x 4, for the behavior of !(x) strongly depends on f (x)
and its first derivative f 0(x) (see eq. [28]). As an illustrative
example of how the dimensionless viscosity is affected by the
last term in equation (30), we display in Figure 1 plots of f (x)
for two different values of j. The dynamical viscosity function
shown by the solid curve in Figure 1 corresponds to � ¼ 16,
!� ¼ 0:6, and j ¼ �0:8. According to equations (32) and (33),
this can be realized for a typical X-ray binary pulsar of spin
period 1 s if �� ’ 0:4 with seA ’ 1 and Ṗ� ’ 1:7 ; 10�12 s s�1.
The dashed curve (see Fig. 1) with � ¼ 13, !� ¼ 0:3, and
j ¼ 0:9 represents another physically plausible dynamical vis-
cosity for the same pulsar, provided �� ’ 0:1 for seA ’ 0:8 and
Ṗ� ’ �1:5 ; 10�12 s s�1. Note that the curve associated with
a negative value of j (spin-down) is characterized by two local
extrema, corresponding to a maximum and a minimum, located
respectively at x2 and x1, with x1 < x2. Also, note that there is no
local maximum for j > 0. The curves in Figure 1 are plotted for
illustrative values of � and !�. The conclusions drawn from
Figure 1, however, can be generalized also for other values of �
and !�, if we consider the sign of the second derivative of f (x)
at local extrema. The real extremum points, xext ¼ x1;2, can
be found from f 0(xext) ¼ 0 as

x1;2 ¼
1

9j2
�36�!� � 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2!2

� þ 21� j
q� �

j2
� �2=3

; ð34Þ

provided we have 16�!2
� þ 21 j � 0. The first root, x1, specified

by the plus sign within the parentheses in equation (34), can be
identified to be the local minimum, whereas the second root, x2,
with the minus sign represents the local maximum. Equation
(34), then, implies that x1 < x2. The local minima of both
curves in Figure 1 are inside the corotation radii, i.e., x1 ’
1:3 < xco ’ 1:4 < x2 ’ 9:8 for !� ¼ 0:6 and x1 ’ 1:8 < xco ’
2:2 for !� ¼ 0:3, where xco � rco=rin. As we see in x 4, x1 <
rco=rin is always satisfied if the rotation of the disk matter is
nearly Keplerian for r � rco. The plasma is progressively
brought into corotation with the neutron star in an inner tran-
sition zone of radial extension �rin. The angular velocity of the
inner-disk matter starts deviating from its Keplerian value at
rP x1rin, for the magnetic stress dominates over the shear
stress when the dynamical viscosity becomes sufficiently small,

that is, when f (x1)T1. The width of the inner transition zone
can then be estimated as �P x1 � 1.

4. APPLICATION TO OBSERVED BINARY
X-RAY PULSARS

We solved the second-order differential equation (28) for
!(x), substituting equation (30) for the dynamical viscosity. As
we do not know a priori where the true inner-disk radius is
located, we tried different values of !� for a given torque j.
As an initial guess for each set of (!�, j ), we calculated � such
that f (x1) ¼ 0. We observed that the necessary boundary con-
ditions, i.e., !(x ¼ 1) ¼ !� and !(x > xco) ’ x�3=2, are satis-
fied to the desired accuracy in our numerical iteration only for
certain values of � for which the dynamical viscosity nearly
vanishes at x ¼ x1. Our results for a rotator in spin equilibrium,
i.e., j ¼ 0, are shown in Figures 2a and 2b. As in Figure 1, the
corresponding dynamical viscosities (dashed curves) and the
angular velocity profiles (solid curves) are plotted as functions
of x ¼ r=rin. The dotted curves represent Keplerian rotation.
Note that the angular velocity is braked by the magnetic stress
only inside xco and that the rotation of the disk plasma is almost
Keplerian outside xco. We calculate the net torque applied by
the disk on the star using a closed surface through the coro-
tation radius. The surface encloses the central object and ex-
cludes part of the disk for x � xco. This choice avoids the
uncertainties involved in making torque calculations in the
inner disk where � 6¼ �K. We write the torque as

N� ¼ N mat
co þ N vis

co þ Nmag; ð35Þ

where the angular momentum flux carried by the material
stress through a cylindrical surface area 4�rcoH(rco) is

N mat
co ¼ Ṁr 2co�K(rco): ð36Þ

The contribution of the viscous stress to the flux of angular
momentum through the same surface is given by

N vis
co ¼ Ṁ

3�
f (xco)r

2
co

d�K

dr

� �
rco

(2�rco)

¼ � f (xco)Ṁr 2co�K(rco): ð37Þ

Fig. 1.—Radial variation of normalized vertically integrated dynamical
viscosity f (x) ¼ 3���=Ṁ from the outer-disk regions x ¼ 50 to the innermost
radius x ¼ 1, where x � r=rin, for different values of parameters (�; j; !�). The
solid curve corresponds to f (x) with � ¼ 16, !� ¼ 0:6, and j ¼ �0:8, and the
dashed curve corresponds to f (x) with � ¼ 13, !� ¼ 0:3, and j ¼ 0:9.
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The magnetic coupling outside the corotation radius yields a
net spin-down torque,

Nmag ¼ �
Z 1

rco

r 2BzB
þ
� dr ¼ � 1

3
�x�7=2

co Ṁr 2co�K(rco); ð38Þ

which, together with equations (36) and (37), gives N� ¼
jṀ (GM�rin)

1=2 according to equation (30). This justifies our
interpretation of j as the dimensionless torque acting on the
neutron star in units of the angular momentum flux carried by
matter through the inner edge of the disk. Also, note from
Figures 2a and 2b that x1 decreases (i.e., x1 ! 1) while !�
increases as expected. There is, however, an upper limit for !�
if the star is in rotational equilibrium since

lim
j!0

x1(�; j; !�) ¼
7

8!�; c

� �2=3

� 1; ð39Þ

independent of �, following from equation (34). Thus, for
accreting systems in rotational equilibrium, j ¼ 0, the critical
fastness parameter !�; c for the transition from spin-down to
spin-up depends on the angular velocity profile (width of the
transition zone) in equilibrium. Equation (39) implies that the
maximum possible critical fastness parameter is (!�; c)max ¼
0:875, a value quoted previously by Wang (1995, hereafter
W95) as the critical fastness parameter for a star accreting from
a turbulent disk. According to the accretion torque model of
W95, the Keplerian rotation holds throughout the whole disk.
Equivalently, in our model, this maximum critical fastness
parameter obtains if the angular velocity transition region is
extremely narrow or there is no transition region at all. This
corresponds to the x1 ¼ 1 limit among systems in spin equi-
librium as seen from the comparison of Figures 2a and 2b. The
usual fastness parameter, !s , can be expressed in terms of !� as

!s �
��

�K(r0)
¼ r0

rco

� �3=2

¼ x
3=2
0 !�: ð40Þ

Here, r0 is the radius where � reaches its maximum and x0 �
r0=rin. Using equation (40), we obtain !s; c ffi 0:75 for !�; c ¼
0:5 from Figure 2a and !s; c ffi 0:83 for !�; c ¼ 0:8 from Fig-

ure 2b. Our analysis indicates broad transition zones for j ¼ 0
rather than narrow ones if !s; c < 0:8. The disk is Keplerian at
all radii only for !�; c ¼ !s; c ¼ 0:875 and x0 ¼ x1 ¼ 1.

We have extended our calculations to several binary X-ray
pulsars observed as QPO sources. One of the simplest and most
frequently used models for QPOs from X-ray pulsars is the
beat frequency model (BFM; Alpar & Shaham 1985). Ac-
cording to the BFM, the inhomogeneities at the inner edge of
the Keplerian disk modulate the X-ray intensity, and the QPO
is observed as the beat frequency between the local Keplerian
frequency and the neutron star spin frequency,

�QPO ¼ �K(r0)� ��: ð41Þ

The corresponding fastness parameter can be written as

!BFM
s ¼ 1

1þ P��QPO
; ð42Þ

where P� is the spin period of the observed X-ray pulsar. The
QPOs detected from X-ray pulsars can be used, within the
BFM, to obtain constraints on the fastness parameter. For each
source, we assumed M� ¼ 1:4 M	 and R�6 ¼ 1. We calculated
j as a function of !� from equation (33) and !BFM

s from
equation (42) using the observed periods P�, period derivatives
Ṗ� , X-ray luminosities LX , and QPO frequencies �QPO of these
X-ray pulsars (Takeshima et al. 1994; Wang 1996 and refer-
ences therein). We determined the mass accretion rates through
Ṁ ¼ LXR�=GM�. The magnetic dipole moments ��30 have
been recently deduced from the cyclotron features (Coburn
et al. 2002). Sources such as 4U 1626�67, which are known to
be close to their spin equilibrium, indicate lower values for the
critical fastness parameter. The reason for this could be the
deviation of angular velocity from the Keplerian profile near
the inner-disk regions (Li & Wang 1996). Figure 3a shows the
predicted rotation curve of 4U 1626�67 when the pulsar was
spinning up just before the torque reversal in 1990. After the
torque reversal, we expect the angular motion of the disk
matter around the same pulsar as in Figure 3b. The estimated
angular velocity profiles of 4U 0115+63 and Cen X-3 are
plotted in Figures 4 and 5, respectively. We could obtain the
relevant rotation profiles shown in Figures 3, 4, and 5 only

Fig. 2.—Radial variation of angular velocity !(x) � �=�K(rin) and the corresponding normalized vertically integrated dynamical viscosity f (x) ¼ 3���=Ṁ for a
disk around a magnetized star in spin equilibrium. The rotation rate profiles !(x), shown by solid curves in (a) and (b), obtain for � ¼ 14:5, !� ¼ 0:5, j ¼ 0 and
� ¼ 4:9, !� ¼ 0:8, j ¼ 0, respectively. In each panel the dashed curve corresponds to f (x), and the dotted curve corresponds to the Keplerian profile !K(x) ¼ x�3=2,
where x � r=rin.
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for specific values of !�, provided we have !s ¼ !BFM
s (see

eq. [40]). With these constraints, the disk model depends on
three parameters, rin , �, and j, and there is a unique solution,
such that if one of these three parameters is known, the other
two can be obtained as the parameters that yield the unique
solution for �(r). For example, if the value of rin is assumed,
e.g., rin ¼ rA, then � and j, and therefore the torque on the star,
can be obtained numerically by scanning the �; j parameter
space until the unique solution is found. In the applications, we
used observed values of �̇ to determine j and scanned in �
only, to use a shortcut to the model solution. We now sum-
marize our results for each of these individual sources.

4U 1626�67 is a low-mass X-ray binary pulsar with a 7.66 s
spin period. The pulsar was in a steady spin-up state with

Ṗ� ffi �4:86 ; 10�11 s s�1 during 1977–1990. After the 1990
torque reversal, the source underwent steady spin-down with

Ṗ� ffi 4:32 ; 10�11 s s�1. Although there is no indication of
an abrupt change in the X-ray luminosity at the torque reversal,
a gradual decrease over a decade in the mass accretion rate
can be seen from the archival flux history (Chakrabarty et al.
1997). The QPO frequency is �0.04 Hz during both the spin-
up and spin-down episodes. The estimated mass accretion rates
are Ṁ17 � 1 for spin-up and Ṁ17 � 0:5 for spin-down. The
BFM gives !BFM

s ¼ 0:76. Figure 3a shows the predicted rota-
tion curve, when the pulsar spins up, for !s ffi 0:76 with !� ¼
0:65 and � ¼ 6:48. The angular velocity profile during the spin-
down episode was estimated for the same fastness parameter as
in Figure 3bwith !� ¼ 0:2 and � ¼ 163. We find rin=rco ffi 0:75
and rin=r0 ffi 0:91 for spin-up, and rin=rco ffi 0:34 and rin=r0 ffi
0:41 for spin-down with rco ffi 6:5 ; 108 cm. At the torque
reversal, we expect that ��s

2
eA changes from 4.7 to 3.8 according

to our values of � and !� for ��30 ¼ 2:2. Note that the angular

Fig. 5.—Radial variation of angular velocity !(x) � �=�K(rin) and the
corresponding normalized vertically integrated dynamical viscosity f (x) ¼
3���=Ṁ for a disk around an X-ray pulsar with observed parameters ap-
propriate for Cen X-3. The rotation rate profile !(x), shown by the solid curve,
obtains for � ¼ 3:92, !� ¼ 0:84, j ’ 0:106. The dashed curve corresponds to
f (x), and the dotted curve corresponds to the Keplerian profile !K(x) ¼ x�3=2,
where x � r=rin.

Fig. 3.—Estimated rotation rate profiles !(x) � �=�K(rin) and the corresponding normalized vertically integrated dynamical viscosities f (x) ¼ 3���=Ṁ for a
magnetically threaded disk around an X-ray pulsar with observed parameters appropriate for 4U 1626�67 before and after the torque reversal. (a) Angular velocity
transition zone during the spin-up episode. The transition region is broad as seen from (b) when the source is in spin-down state. The rotation rate profiles !(x),
shown by solid curves in (a) and (b), obtain for � ¼ 6:48, !� ¼ 0:65, j ’ 0:196 and � ¼ 163, !� ¼ 0:2, j ’ �0:513, respectively. In each panel the dashed curve
corresponds to f (x) and the dotted curve corresponds to the Keplerian profile !K(x) ¼ x�3=2, where x � r=rin.

Fig. 4.—Radial variation of angular velocity !(x) � �=�K(rin) and the
corresponding normalized vertically integrated dynamical viscosity f (x) ¼
3���=Ṁ for a disk around an X-ray pulsar with observed parameters ap-
propriate for 4U 0115+63. The rotation rate profile !(x), shown by the solid
curve, obtains for � ¼ 4:25, !� ¼ 0:78, j ’ 0:185. The dashed curve corre-
sponds to f (x), and the dotted curve corresponds to the Keplerian profile
!K(x) ¼ x�3=2, where x � r=rin.
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velocity transition zone is quite broad for the spin-down state,
i.e., �r=r0 ¼ 1� rin=r0 ffi 0:59 in comparison with �r=r0 ffi
0:09 during the spin-up episode.

4U 0115+63 is a 3.61 s pulsar. It has Ṗ� ffi �3:66 ; 10�12 s
s�1 and Ṁ17 � 0:43. The observed QPO frequency is 0.062 Hz.
We inferred a fastness parameter of 0.817 from the BFM. We
find r0 ffi 3:4 ; 108 cm and rco ffi 3:9 ; 108 cm. The same value
for !s can be determined from the angular velocity profile if
!� ¼ 0:78 (see Fig. 4). We get rin=r0 ffi 0:97. The width of the
transition zone can be estimated as �r=r0 ffi 0:03. An Alfvén
radius of 4:3 ; 108 cm for ��30 ffi 1 gives rin=rA ffi 0:77. The
solution in Figure 4 was obtained for � ¼ 4:25. This further
implies that ��s

2
eA ffi 1:7.

Cen X-3 is a 4.83 s pulsar. It has Ṗ� ffi �4:29 ; 10�11 s s�1

and Ṁ17 � 4:3. The observed QPO frequency is 0.035 Hz. The
fastness parameter inferred from equation (42) is 0.855. We
estimate r0=rco ffi 0:9. A boundary layer width of �r=r0 ffi 0:01
can be deduced from rin=r0 ffi 0:99. Our computation gives
!s ¼ 0:855 only for !� ¼ 0:84 and � ¼ 3:92 (see Fig. 5). This
yields rin ffi 4:27 ; 108 cm and ��s

2
eA ffi 14 for ��30 ffi 2 and

rco ffi 4:8 ; 108 cm. Our model predicts rin=rA ffi 1:28 for this
source.

5. MODEL APPLICATIONS IN COMPARISON
WITH RESULTS OF NUMERICAL SIMULATIONS

The recent numerical study made by RUKL02 is the only
work in which the slow viscous accretion and the disk-
magnetized star interaction were investigated in fully two-
dimensional time-dependent simulations with quasi-stationary
conditions. The results of RUKL02 are relevant to all sta-
tionary models that describe the magnetic interaction of an
accreting star with its surrounding disk. As the simulations by
RUKL02 are two-dimensional, whereas our work is limited to
one dimension, we expect significant differences between some
of our results and their predictions. The inner boundary chosen
by RUKL02 to investigate the dynamics of disk accretion is the
rotating star on which free boundary conditions are applied to
several hydrodynamic variables. In our work, the computa-
tional region is limited by the inner radius of the disk where the
disk plasma corotates with the stellar magnetosphere. We keep
the Keplerian law fixed as the asymptotic outer boundary con-
dition on the rotation rate of the disk matter. The outer boundary
conditions taken by RUKL02 on all hydrodynamic variables
are fixed for the maximum computational region and free for
a smaller simulation region (inner disk).

Although our boundary conditions differ significantly from the
ones used by RUKL02, it is possible to make appropriate con-
versions between our reference values and those of RUKL02
for the inner-disk radius and the physical quantities such as the
stellar rotation rate and the angular momentum flux. Our refer-
ence value for the distance is always the true inner radius of the
disk, rin, which is equivalent to 1 in dimensionless units. The
innermost disk radius within which all the disk matter goes up
into the funnel flow changes in time relative to the reference
value for the distance, R0, in numerical simulations of RUKL02.
This innermost radius corresponds to rin in our model, since the
matter nearly corotates with the star inside rin < R0.

The dimensionless stellar rotation rate, which is the fastness
parameter in our units, is given by

!� � !�0
�K(R0)

�K(rin)

� �
¼ !�0

rin

R0

� �3=2

; ð43Þ

where !�0 is the fastness parameter in units of RUKL02.

The dimensionless total angular momentum flux to the star
in our units can be written as

j � J̇

Ṁ r 2in�K(rin)
¼ ’

Ṁ0

Ṁ

� �
R0

rin

� �1=2

; ð44Þ

where J̇ ¼ ’Ṁ0R
2
0�K(R0) is the total angular momentum flux

to the star and Ṁ0 is the reference mass accretion rate in units
of RUKL02.

In the following, we estimate the approximate location of the
braking radius, r br, using our model parameters �, j, and !�.
The braking radius was first defined by RUKL02 as the radius
inside of which the disk is significantly disturbed by the stellar
field. In almost all simulations by RUKL02 (especially the
relevant ones with ‘‘type I’’ initial conditions), the density in
the disk drops sharply at rP r br and the matter is magnetically
braked for rin < rP r br. The density in the disk rises again near
the innermost radius. The radial variation of density at each
time step of these numerical simulations is qualitatively rem-
iniscent of the behavior of our dynamical viscosity, f (x) ¼
3���=Ṁ (see Fig. 1). To make a quantitative comparison of
our model predictions with the results of RUKL02, we use the
numerical data of simulations for accretion to a slowly rotating
star with !�0 ¼ 0:19. We select the numerical values given by
RUKL02 for the mass accretion rate Ṁ=Ṁ0, the angular mo-
mentum flux ’, and the inner-disk radius rin=R0 at times
t ¼ 30P0 and 40P0, where P0 is the rotational period at R0.
Using equations (43) and (44), we calculate our model pa-
rameters !� and j. Equations (30) and (34) can be employed
together with the condition f (x1)T1 (see xx 3 and 4) to solve
for �. Once all model parameters are determined, the braking
radius r br � (rin=R0)x1 where the density becomes minimum
can be readily found from equation (34). Our numerical cal-
culations yield r br � 2:61 at t ¼ 30P0 and r br � 2:65 at t ¼
40P0. These estimates are in agreement with the results of
RUKL02.

6. DISCUSSION

We investigated the rotational dynamics of an accretion
disk threaded by the dipolar magnetic field of a neutron star
with constant screening factor. Within model assumptions, we
found that a range of narrow or wide angular velocity transi-
tion zones with non-Keplerian rotation are consistent with ob-
servations. Our approach is analogous to the work of Glatzel
(1992) for the nonmagnetic case. We derived a vertically in-
tegrated dynamical viscosity form for a magnetically threaded
disk from the conservation of mass and angular momentum
using the Keplerian rotation as a particular solution for the
angular motion of the disk plasma. Assuming that the whole
disk can be treated by the same dynamical viscosity, we were
able to obtain rotation curves without the restricting assump-
tion of a thin boundary layer. We also used a more realistic,
spatially varying azimuthal pitch , Bþ

� =Bz , throughout the an-
gular velocity transition zone instead of keeping it constant as
in the model of GL79. The effect of the magnetically enhanced
viscous stress is included in our calculations. The rotation of
the disk matter is almost Keplerian outside the corotation ra-
dius. The deviation from the Keplerian law is noticeable where
the effective viscous stress is negligible as compared with the
magnetic stress. This can be realized at a specific disk radius,
r1 ¼ x1rin , where the vertically integrated dynamical viscosity
function, f, goes through a local minimum and actually nearly
vanishes. The angular velocity at r1 is still nearly Keplerian.
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We find that the angular motion of the inner-disk plasma from
r1 to rin is controlled by both the viscous and magnetic stresses.
The true inner-disk radius, rin , is therefore determined in our
model by the close balance between the magnetic stress and the
viscous and material stresses. The width of the transition zone,
� P x1�1, depends basically on the model parameters �, j, and
!� (see xx 3 and 4). The physical meaning of this is that for
different values of Ṁ and �� and for a given ��, the torque on
the star from a disk threaded by a screened dipole field can be
achieved with the adjustment of the �(r) profile through a
transition zone. The rotation is nearly Keplerian throughout the
whole disk, and the angular velocity transition region is narrow
in the case of dynamical viscosity decreasing toward the in-
nermost edge of the disk for the current values of �, j, and !�.
The boundary layer approximation of GL79 remains valid only
for f (x ’ 1) � 0 (see Fig. 5). In this sense, the viscously un-
stable inner-disk solutions of BC98 and CH98 could be an
artifact of taking a fully Keplerian disk. In general the inner
disk is not Keplerian; the angular momentum transfer with a
dynamical viscosity increasing at small radii cannot satisfy the
boundary condition imposed by the rotating magnetosphere if
the inner disk is assumed to be Keplerian (see Fig. 3b).

Using observed parameters of several sources in equilib-
rium, spin-up, or spin-down states, we found that the non-
Keplerian transition region for a Keplerian flow to match to
the rotation rate of the stellar magnetosphere can be broad or
narrow depending on source state. The beat frequency inter-
pretation of QPOs provides a constraint on the fastness pa-
rameter for a given source and thus on the model parameters
(�, j, !�) that determine the appropriate rotation curve and the

width of the transition zone. Among the examples we con-
sidered, the transition zones are narrowest, �r=r0 � (0:01 0:1),
for sources in spin-up (4U 1626�67, 4U 0115+63, and Cen
X-3), while �r=r0 � (0:02 0:24) for sources in rotational equi-
librium, and broadest, �r=r0 � 0:6 for 4U 1626�67, when
the source is in spin-down state. QPOs from disk-fed torque-
reversing X-ray binary pulsars may elucidate the function of
non-Keplerian accretion flows and/or the width of the transi-
tion zones in the spin behavior of these sources.
Results of the numerical simulations by RUKL02 were

compared to our model. These two-dimensional simulations
describe an analogous situation where the disk is threaded by
the magnetic field of the star, both viscosity and diffusivity are
of the same order of magnitude, and the disk matter slowly
accretes across the field lines. Although the direct comparison
of the angular velocity distributions is not possible because of
different conditions assumed at the boundaries of computa-
tional domains, there are remarkable similarities between our
model predictions and the results of RUKL02 (see x 5).
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