807 research outputs found

    Traumatic brain injury leads to alterations in contusional cortical miRNAs involved in dementia

    Get PDF
    There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia

    Resistant Hypertension and Obstructive Sleep Apnea in the Primary-Care Setting

    Get PDF
    We ascertained the prevalence of resistant hypertension (RH) among blacks and determined whether RH patients are at greater risk for obstructive sleep apnea (OSA) than hypertensives. Method. Data emanated from Metabolic Syndrome Outcome Study (MetSO), a study investigating metabolic syndrome among blacks in the primary-care setting. Sample of 200 patients (mean age = 63 ± 13 years; female = 61%) with a diagnosis of hypertension provided subjective and clinical data. RH was defined using the JNC 7and European Society guidelines. We assessed OSA risk using the Apnea Risk Evaluation System ARES), defining high risk as a total ARES score ≥6. Results. Overall, 26% met criteria for RH and 40% were at high OSA risk. Logistic regression analysis, adjusting for effects of age, gender, and medical co morbidities, showed that patients with RH were nearly 2.5 times more likely to be at high OSA risk, relative to those with hypertension (OR = 2.46, 95% CI: 1.03–5.88, P < .05). Conclusion. Our findings show that the prevalence of RH among blacks fell within the range of RH for the general hypertensive population (3–29%). However, patients with RH were at significantly greater risk of OSA compared to patients with hypertension

    Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes

    Full text link
    We introduce a formulation of Eulerian general relativistic hydrodynamics which is applicable for (perfect) fluid data prescribed on either spacelike or null hypersurfaces. Simple explicit expressions for the characteristic speeds and fields are derived in the general case. A complete implementation of the formalism is developed in the case of spherical symmetry. The algorithm is tested in a number of different situations, predisposing for a range of possible applications. We consider the Riemann problem for a polytropic gas, with initial data given on a retarded/advanced time slice of Minkowski spacetime. We compute perfect fluid accretion onto a Schwarzschild black hole spacetime using ingoing null Eddington-Finkelstein coordinates. Tests of fluid evolution on dynamic background include constant density and TOV stars sliced along the radial null cones. Finally, we consider the accretion of self-gravitating matter onto a central black hole and the ensuing increase in the mass of the black hole horizon.Comment: 23 pages, 13 figures, submitted to Phys. Rev.

    Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests

    Full text link
    This is the first in a series of papers on the construction and validation of a three-dimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations with a perfect fluid source. The numerical treatment of the general relativistic hydrodynamic equations is based on high resolution shock capturing schemes. These schemes rely on the characteristic information of the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime metric is presented. Evolutions based on three different approximate Riemann solvers coupled to four different discretizations of the Einstein equations are studied and compared. The coupling between the hydrodynamics and the spacetime (the right and left hand side of the Einstein equations) is carried out in a treatment which is second order accurate in {\it both} space and time. Convergence tests for all twelve combinations with a variety of test beds are studied, showing consistency with the differential equations and correct convergence properties. The test-beds examined include shocktubes, Friedmann-Robertson-Walker cosmology tests, evolutions of self-gravitating compact (TOV) stars, and evolutions of relativistically boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g., neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface region of the star (where the rest mass density is abruptly dropping to zero).Comment: 45 pages RevTeX, 34 figure

    Управління виробничими запасами на підприємстві (на матеріалах ПрАТ «Детвілер Ущільнюючі Технології України»)

    Get PDF
    . The second-order matching problem is the problem of determining, for a finite set {#t i , s i # | i # I} of pairs of a second-order term t i and a first-order closed term s i , called a matching expression, whether or not there exists a substitution # such that t i # = s i for each i # I . It is well-known that the second-order matching problem is NP-complete. In this paper, we introduce the following restrictions of a matching expression: k-ary, k-fv , predicate, ground , and function-free. Then, we show that the second-order matching problem is NP-complete for a unary predicate, a unary ground, a ternary function-free predicate, a binary function-free ground, and an 1-fv predicate matching expressions, while it is solvable in polynomial time for a binary function-free predicate, a unary function-free, a k-fv function-free (k # 0), and a ground predicate matching expressions. 1 Introduction The unification problem is the problem of determining whether or not any two ter..

    Shelf Inputs and Lateral Transport of Mn, Co, and Ce in the Western North Pacific Ocean

    Get PDF
    The margin of the western North Pacific Ocean releases redox-active elements like Mn, Co, and Ce into the water column to undergo further transformation through oxide formation, scavenging, and reductive dissolution. Near the margin, the upper ocean waters enriched in these elements are characterized by high dissolved oxygen, low salinity, and low temperature, and are a source of the North Pacific Intermediate Water. High dissolved concentrations are observed across the Western Subarctic Gyre, with a rapid decrease in concentrations away from the margin and across the subarctic-subtropical front. The particulate concentrations of Mn, Co, and Ce are also high in the subarctic surface ocean and enriched relative to Ti and trivalent rare earth elements. Furthermore, the particles enriched in Mn, Co, and Ce coincide at the same depth range, suggesting that these elemental cycles are coupled through microbial oxidation in the subarctic gyre as the waters travel along the margin before being subducted at the subarctic-subtropical front. Away from the margin, the Mn, Co, and Ce cycles decouple, as Mn and Ce settle out as particles while dissolved Co is preserved and transported within the North Pacific Intermediate Water into the central North Pacific Ocean

    Correction to: The intake of flavonoids, stilbenes, and tyrosols, mainly consumed through red wine and virgin olive oil, is associated with lower carotid and femoral subclinical atherosclerosis and coronary calcium

    Get PDF
    The original version of this article unfortunately contained a mistake. The author’s name Henry Montero-Salazar was incorrectly written as Henry Montero Salazar. © The Author(s) 2022

    Relativistic Hydrodynamics around Black Holes and Horizon Adapted Coordinate Systems

    Get PDF
    Despite the fact that the Schwarzschild and Kerr solutions for the Einstein equations, when written in standard Schwarzschild and Boyer-Lindquist coordinates, present coordinate singularities, all numerical studies of accretion flows onto collapsed objects have been widely using them over the years. This approach introduces conceptual and practical complications in places where a smooth solution should be guaranteed, i.e., at the gravitational radius. In the present paper, we propose an alternative way of solving the general relativistic hydrodynamic equations in background (fixed) black hole spacetimes. We identify classes of coordinates in which the (possibly rotating) black hole metric is free of coordinate singularities at the horizon, independent of time, and admits a spacelike decomposition. In the spherically symmetric, non-rotating case, we re-derive exact solutions for dust and perfect fluid accretion in Eddington-Finkelstein coordinates, and compare with numerical hydrodynamic integrations. We perform representative axisymmetric computations. These demonstrations suggest that the use of those coordinate systems carries significant improvements over the standard approach, especially for higher dimensional studies.Comment: 10 pages, 4 postscript figures, accepted for publication in Phys. Rev.

    Shelf Inputs and Lateral Transport of Mn, Co, and Ce in the Western North Pacific Ocean

    Get PDF
    The margin of the western North Pacific Ocean releases redox-active elements like Mn, Co, and Ce into the water column to undergo further transformation through oxide formation, scavenging, and reductive dissolution. Near the margin, the upper ocean waters enriched in these elements are characterized by high dissolved oxygen, low salinity, and low temperature, and are a source of the North Pacific Intermediate Water. High dissolved concentrations are observed across the Western Subarctic Gyre, with a rapid decrease in concentrations away from the margin and across the subarctic-subtropical front. The particulate concentrations of Mn, Co, and Ce are also high in the subarctic surface ocean and enriched relative to Ti and trivalent rare earth elements. Furthermore, the particles enriched in Mn, Co, and Ce coincide at the same depth range, suggesting that these elemental cycles are coupled through microbial oxidation in the subarctic gyre as the waters travel along the margin before being subducted at the subarctic-subtropical front. Away from the margin, the Mn, Co, and Ce cycles decouple, as Mn and Ce settle out as particles while dissolved Co is preserved and transported within the North Pacific Intermediate Water into the central North Pacific Ocean

    Determinantal Characterization of Canonical Curves and Combinatorial Theta Identities

    Full text link
    We characterize genus g canonical curves by the vanishing of combinatorial products of g+1 determinants of Brill-Noether matrices. This also implies the characterization of canonical curves in terms of (g-2)(g-3)/2 theta identities. A remarkable mechanism, based on a basis of H^0(K_C) expressed in terms of Szego kernels, reduces such identities to a simple rank condition for matrices whose entries are logarithmic derivatives of theta functions. Such a basis, together with the Fay trisecant identity, also leads to the solution of the question of expressing the determinant of Brill-Noether matrices in terms of theta functions, without using the problematic Klein-Fay section sigma.Comment: 35 pages. New results, presentation improved, clarifications added. Accepted for publication in Math. An
    corecore