24,921 research outputs found
Higher Spin BRS Cohomology of Supersymmetric Chiral Matter in D=4
We examine the BRS cohomology of chiral matter in , supersymmetry
to determine a general form of composite superfield operators which can suffer
from supersymmetry anomalies. Composite superfield operators \Y_{(a,b)} are
products of the elementary chiral superfields and \ov S and the
derivative operators D_\a, \ov D_{\dot \b} and \pa_{\a \dot \b}. Such
superfields \Y_{(a,b)} can be chosen to have `' symmetrized undotted
indices \a_i and `' symmetrized dotted indices \dot \b_j. The result
derived here is that each composite superfield \Y_{(a,b)} is subject to
potential supersymmetry anomalies if is an odd number, which means that
\Y_{(a,b)} is a fermionic superfield.Comment: 15 pages, CPT-TAMU-20/9
BRS Cohomology of the Supertranslations in D=4
Supersymmetry transformations are a kind of square root of spacetime
translations. The corresponding Lie superalgebra always contains the
supertranslation operator . We find that the
cohomology of this operator depends on a spin-orbit coupling in an SU(2) group
and has a quite complicated structure. This spin-orbit type coupling will turn
out to be basic in the cohomology of supersymmetric field theories in general.Comment: 14 pages, CTP-TAMU-13/9
Dominant partition method
By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails
The Theory Behind TheoryMine
Abstract. We describe the technology behind the TheoryMine novelty gift company, which sells the rights to name novel mathematical theorems. A tower of four computer systems is used to generate recursive theories, then to speculate conjectures in those theories and then to prove these conjectures. All stages of the process are entirely automatic. The process guarantees large numbers of sound, novel theorems of some intrinsic merit.
Swimming in curved space or The Baron and the cat
We study the swimming of non-relativistic deformable bodies in (empty) static
curved spaces. We focus on the case where the ambient geometry allows for rigid
body motions. In this case the swimming equations turn out to be geometric. For
a small swimmer, the swimming distance in one stroke is determined by the
Riemann curvature times certain moments of the swimmer.Comment: 19 pages 6 figure
Technical innovation changes standard radiographic protocols in veterinary medicine: is it necessary to obtain two dorsoproximal-palmarodistal oblique views of the equine foot when using computerised radiography systems?
Since the 1950s, veterinary practitioners have included two separate dorsoproximal–palmarodistal oblique (DPr–PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr–PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1–3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr–PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure
- …