461 research outputs found

    Entanglement in a molecular three-qubit system

    Full text link
    We study the entanglement properties of a molecular three-qubit system described by the Heisenberg spin Hamiltonian with anisotropic exchange interactions and including an external magnetic field. The system exhibits first order quantum phase transitions by tuning two parameters, xx and yy, of the Hamiltonian to specific values. The three-qubit chain is open ended so that there are two types of pairwise entanglement : nearest-neighbour (n.n.) and next-nearest-neighbour (n.n.n.). We calculate the ground and thermal state concurrences, quantifying pairwise entanglement, as a function of the parameters xx, yy and the temperature TT. The entanglement threshold and gap temperatures are also determined as a function of the anisotropy parameter xx. The results obtained are of relevance in understanding the entanglement features of the recently engineered molecular Cr7NiCr_{7}Ni-Cu2+Cu^{2+}-Cr7NiCr_{7}Ni complex which serves as a three-qubit system at sufficiently low temperatures.Comment: 9 pages, 13 figures, revtex

    Highly Entangled Ground States in Tripartite Qubit Systems

    Full text link
    We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate GHZ and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle tau. By adapting a steepest-descent optimization algorithm we demonstrate that tau can be evaluated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.Comment: 4 pages, 2 figure

    A comparison of building value models for flood risk analysis

    Get PDF
    Quantitative flood risk analyses support decisions in flood management policies that aim for cost efficiency. Risk is commonly calculated by a combination of the three quantified factors: hazard, exposure and vulnerability. Our paper focuses on the quantification of exposure, in particular on the relevance of building value estimation schemes within flood exposure analyses on regional to national scales. We compare five different models that estimate the values of flood-exposed buildings. Four of them refer to individual buildings, whereas one is based on values per surface area, differentiated by land use category. That one follows an approach commonly used in flood risk analyses on regional or larger scales. Apart from the underlying concepts, the five models differ in complexity, data and computational expenses required for parameter estimations and in the data they require for model application.The model parameters are estimated by using a database of more than half a million building insurance contracts in Switzerland, which are provided by 11 (out of 19) cantonal insurance companies for buildings that operate under a monopoly within the respective Swiss cantons. Comparing the five model results with the directly applied spatially referenced insurance data suggests that models based on individual buildings produce better results than the model based on surface area, but only if they include an individual building's volume.Applying the five models to all of Switzerland produces results that are very similar with regard to the spatial distribution of exposed-building values. Therefore, for spatial prioritizations, simpler models are preferable. In absolute values, however, the five model results differ remarkably. The two simplest models underestimate the overall exposure, and even more so the extreme high values, upon which risk management strategies generally focus. In decision-making processes based on cost-efficiency, this underestimation would result in suboptimal resource allocation for protection measures. Consequently, we propose that estimating exposed-building values should be based on individual buildings rather than on areas of land use types. In addition, a building's individual volume has to be taken into account in order to provide a reliable basis for cost–benefit analyses. The consideration of other building features further improves the value estimation. However, within the context of flood risk management, the optimal value estimation model depends on the specific questions to be answered. The concepts of the presented building value models are generic. Thus, these models are transferable, with minimal adjustments according to the application's purpose and the data available. Within risk analyses, the paper's focus is on exposure. However, the findings also have direct implications for flood risk analyses as most risk analyses take the value of exposed assets into account in a linear way.</p

    NO x reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR

    Get PDF
    A DeNO x demonstration system for a diesel engine used in construction machineries and mobile cranes was setup. In preliminary experiments various extruded and coated SCR catalysts were evaluated with and without oxidizing pre-catalyst. The data from stationary tests with two selected catalysts were used to establish various model-based control algorithms for the optimum dosage of urea in the ESC and ETC. A NO x conversion of >93% at <10ppm average ammonia slip could be achieved at a converter-to-swept volume ratio of <2.

    Aquaplanet simulations with winter and summer hemispheres: model setup and circulation response to warming

    Get PDF
    To support further understanding of circulation changes in a warming climate, an idealised aquaplanet model setup containing summer and winter hemispheres is presented, and the results of circulation changes under warming are discussed. First, a setup is introduced that enables aquaplanet simulations with a warmer and a colder hemisphere, including realistic-looking summer and winter jet streams, storm tracks, and precipitation patterns that are fairly similar to observations, as well as a more intense and equatorward storm track in the winter compared to the summer hemisphere. The sea surface temperature (SST) distribution used here is inspired by the June–July–August zonal mean SST found in reanalysis data and is flexible to allow control of the occurrence of a single or double intertropical convergence zone (ITCZ). The setup is then used to investigate circulation changes under uniform warming, as motivated by recent research. For example, the stronger poleward shift of the storm tracks during summer compared to winter is reproduced. Furthermore, the jet waviness decreases under warming when compared on isentropes with maximum wind speed or isentropes at similar heights in pressure space. Jet stream waviness increases under warming when compared at similar-valued isentropes but primarily because the corresponding isentrope is closer to the surface in the warmer climate and waviness climatologically increases downwards in the atmosphere. A detailed analysis of the changes in wave amplitude for different wavenumbers confirms that the amplitude of large waves increases with warming, while that of short waves decreases with warming. The reduction in wave amplitude of short synoptic waves is found to dominate in the jet core region, where jet waviness also decreases and is more pronounced on the equatorward side of the jet. Long waves increase in amplitude on the poleward side of the jet and at upper stratospheric levels, which is consistent with increased jet waviness at these levels. The projected increased amplitude of planetary waves and the reduced amplitude of synoptic waves are thus clear in our aquaplanet simulations and do not require zonal asymmetries or regional warming patterns. During so-called high-amplitude wave events, there is no evidence for a preferential phase of Rossby waves of wavenumbers 5 or 7, indicating the crucial role of stationary waves forced by orography or land–sea contrast in establishing previously reported preferential phases. We confirm that feature-based block detection requires significant tuning to the warmer climate to avoid the occurrence of spurious trends. After adjustment for changes in tropopause height, the block detection used here shows no trend in the summer hemisphere and an increase in blocking in the colder hemisphere. We also confirm previous findings that the number of surface cyclones tends to decrease globally under warming and that the cyclone lifetimes become shorter, except for very long-lived cyclones.</p

    Dynamics of concurrent and sequential Central European and Scandinavian heatwaves

    Get PDF
    In both 2003 and 2018 a heatwave in Scandinavia in July was followed by a heatwave in Central Europe in August. Whereas the transition occurred abruptly in 2003, it was gradual in 2018 with a 12-day period of concurrent heatwaves in both regions. This study contrasts these two events in the context of a heatwave climatology to elucidate the dynamics of both concurrent and sequential heatwaves. Central European and, in particular, concurrent heatwaves are climatologically associated with weak pressure gradient (WPG) events over Central Europe, which indicate the absence of synoptic activity over this region. One synoptic pattern associated with such events is Scandinavian blocking. This pattern is at the same time conducive to heatwaves in Scandinavia, thereby providing a mechanism by which Scandinavian and Central European heatwaves can co-occur. Further, the association of WPG events with Scandinavian blocking constitutes a mechanism that allows heatwaves to grow beyond the perimeter of the synoptic system from which they emanated. A trajectory analysis of the source regions of the low-level air incorporated in the heatwaves indicates rapidly changing air mass sources throughout the heatwaves in both regions, but no recycling of heat from one heatwave to the other. This finding is line with a composite analysis indicating that transitions between Scandinavian and Central European heatwaves are merely a random coincidence of heatwave onset and decay

    Three-tangle for mixtures of generalized GHZ and generalized W states

    Get PDF
    We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized GHZ state, a|000>+b|111>, and a generalized W state, c|001>+d|010>+f|100>. Using the methods introduced by Lohmayer et al. we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state

    Electronic-structure-induced deformations of liquid metal clusters

    Full text link
    Ab initio molecular dynamics is used to study deformations of sodium clusters at temperatures 500â‹Ż1100500\cdots 1100 K. Open-shell Na14_{14} cluster has two shape isomers, prolate and oblate, in the liquid state. The deformation is stabilized by opening a gap at the Fermi level. The closed-shell Na8_8 remains magic also at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.

    Executive functions in 5- to 8-year olds: Developmental changes and relationship to academic achievement

    Get PDF
    Pronounced improvements in executive functions (EF) during preschool years have been documented in cross-sectional studies. However, longitudinal evidence on EF development during the transition to school and predictive associations between early EF and later school achievement are still scarce. This study examined developmental changes in EF across three time-points, the predictive value of EF for mathematical, reading and spelling skills and explored children's specific academic attainment as a function of early EF. Participants were 323 children following regular education; 160 children were enrolled in prekindergarten (younger cohort: 69 months) and 163 children in kindergarten (older cohort: 78.4 months) at the first assessment. Various tasks of EF were administered three times with an interval of one year each. Mathematical, reading and spelling skills were measured at the last assessment. Individual background characteristics such as vocabulary, non-verbal intelligence and socioeconomic status were included as control variables. In both cohorts, changes in EF were substantial; improvements in EF, however, were larger in preschoolers than school-aged children. EF assessed in preschool accounted for substantial variability in mathematical, reading and spelling achievement two years later, with low EF being especially associated with significant academic disadvantages in early school years. Given that EF continue to develop from preschool into primary school years and that starting with low EF is associated with lower school achievement, EF may be considered as a marker or risk for academic disabilities

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.
    • …
    corecore