20 research outputs found

    Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory

    Full text link
    We present a model of inflation in a supergravity framework in the Einstein frame where the Higgs field of the next to minimal supersymmetric standard model (NMSSM) plays the role of the inflaton. Previous attempts which assumed non-minimal coupling to gravity failed due to a tachyonic instability of the singlet field during inflation. A canonical K\"{a}hler potential with \textit{minimal coupling} to gravity can resolve the tachyonic instability but runs into the η\eta-problem. We suggest a model which is free of the η\eta-problem due to an additional coupling in the K\"{a}hler potential which is allowed by the Standard Model gauge group. This induces directions in the potential which we call K-flat. For a certain value of the new coupling in the (N)MSSM, the K\"{a}hler potential is special, because it can be associated with a certain shift symmetry for the Higgs doublets, a generalization of the shift symmetry for singlets in earlier models. We find that K-flat direction has Hu0=−Hd0∗.H_u^0=-H_d^{0*}. This shift symmetry is broken by interactions coming from the superpotential and gauge fields. This direction fails to produce successful inflation in the MSSM but produces a viable model in the NMSSM. The model is specifically interesting in the Peccei-Quinn (PQ) limit of the NMSSM. In this limit the model can be confirmed or ruled-out not just by cosmic microwave background observations but also by axion searches.Comment: matches the published version at JCA

    FEM simulation of oxidation induced stresses with a coupled crack propagation in a TBC model system

    No full text
    Plasma sprayed thermal barrier coating systems are used on top of highly stressed components, e.g. on gas turbine blades, to protect the underlying substrate from the high surrounding temperatures. A typical coating system consists of the bond-coat (BC), the thermal barrier coating (TBC), and the thermally grown oxide (TGO) between the BC and the TBC. This study examines the failure mechanisms which are caused by the diffusion of oxygen through the TBC and the resulting growth of the TGO. To study the behaviour of the complex failure mechanisms in thermal barrier coatings, a simplified model system is used to reduce the number of system parameters. The model system consists of a bond-coat material (fast creeping Fecralloy or slow creeping MA956) as the substrate with a Y2O3 partially stabilised plasma sprayed zircon oxide TBC on top and a TGO between the two layers. Alongside the experimental studies a FEM simulation was developed to calculate the stress distribution inside the simplified coating system 1. The simulation permits the identification of compression and tension areas which are established by the growth of the oxide layer. Furthermore a 2-dimensional finite element model of crack propagation was developed in which the crack direction is calculated by using short trial cracks in different directions. The direction of the crack in the model system is defined as the crack direction with the maximum energy release rate 2,3. The simulated stress distributions and the obtained crack path provide an insight into the possible failure mechanisms in the coating and allow to draw conclusions for optimising real thermal barrier coating systems. The simulated growth stresses of the TGO show that a slow creeping BC may reduce lifetime. This is caused by stress concentration and cracks under the TGO. A slow creeping BC on the other hand reduces the stresses in the TBC. The different failure mechanisms emphasise the existence of a lifetime optimum which depends on the creep properties of the used bond-coat material. Experimental results show a good agreement with the predicted failure mechanisms

    On the node structure of binary search trees

    No full text

    Magnetic study of the M-type doped barium ferrite nanocrystalline powders

    Get PDF
    We have studied the static magnetic properties of three different M‐type doped barium ferrite compounds prepared by the glass crystallization method. The zero‐field‐cooled (ZFC) and field‐cooled (FC) processes have been recorded at low field and they all show the typical features of a small particle system. The ZFC curves display a broad peak at a temperature TM, which depends on the distribution of particle volumes in the sample. Isothermal magnetization curves M(H) at several temperatures and saturation magnetization Ms as a function of temperature have been measured for the Co‐Ti sample (BaFe10.4Co0.8Ti0.8O19). The dependence on temperature of the macroscopic magnetic parameters has been analyzed. The distribution of blocking temperatures is studied from the derivative of the remanent‐to‐saturation magnetization ratio with respect to temperature and it is fitted to a lognormal distribution, leading to a mean blocking temperature 〈TB〉=(81±40) K. The distribution of volumes of the magnetic unit is also obtained from this fitting. The dependence on temperature of the coercive field follows a Tk‐law below 35 K. The value of the k exponent is discussed within the scope of two models: (i) the aligned case (k=0.5) and (ii) the random case (k=0.77)
    corecore