152 research outputs found

    The Silkworm as a Source of Natural Antimicrobial Preparations: Efficacy on Various Bacterial Strains

    Get PDF
    The global spread of multi-resistant pathogens responsible for infections, which cannot be treated with existing drugs such as antibiotics, is of particular concern. Antibiotics are becoming increasingly ineffective and drug resistance is leading to more difficult-to-treat infections; therefore, new bioactive compounds with antimicrobial activity are needed and new alternative sources should be found. Antimicrobial peptides (AMPs) are synthesized by processes typical of the innate immune system and are present in almost all organisms. Insects are extremely resistant to bacterial infections as they can produce a wide range of AMPs, providing an effective first line of defense. The AMPs produced by insects therefore represent a possible source of natural antimicrobial molecules. In this paper, the possibility of using plasma preparations from silkworm (Bombyx mori) larvae as a source of antimicrobials was evaluated. After simple purification steps, insect plasma was analyzed and tested on different Gram-positive and Gram-negative bacterial strains. The results obtained are encouraging as the assays on Escherichia coli and Enterobacter cloacae showed significant decrease in the growth of these Gram-negative bacteria. Similar results were obtained on Gram-positive bacteria, such as Micrococcus luteus and Bacillus subtilis, which showed strong susceptibility to the silkworm AMPs pool. In contrast, Staphylococcus aureus displayed high resistance to Bombyx mori plasma. Finally, the tested plasma formulations were assessed for possible storage not only at 4 \ub0C, but also above room temperature. In conclusion, partially purified plasma from silkworm could be a promising source of AMPs which could be used in formulations for topical applications, without additional and expensive purification steps

    Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins.

    Get PDF
    Here we made an attempt to obtain partial structural information on the topology of multispan integral membrane proteins of yeast by isolating organellar membranes, removing peripheral membrane proteins at pH 11.5 and introducing chemical crosslinks between vicinal amino acids either using homo- or hetero-bifunctional crosslinkers. Proteins were digested with specific proteases and the products analysed by mass spectrometry. Dedicated software tools were used together with filtering steps optimized to remove false positive crosslinks. In proteins of known structure, crosslinks were found only between loops residing on the same side of the membrane. As may be expected, crosslinks were mainly found in very abundant proteins. Our approach seems to hold to promise to yield low resolution topological information for naturally very abundant or strongly overexpressed proteins with relatively little effort. Here, we report novel XL-MS-based topology data for 17 integral membrane proteins (Akr1p, Fks1p, Gas1p, Ggc1p, Gpt2p, Ifa38p, Ist2p, Lag1p, Pet9p, Pma1p, Por1p, Sct1p, Sec61p, Slc1p, Spf1p, Vph1p, Ybt1p)

    Proteome-Wide Effect of 17-β-Estradiol and Lipoxin A4 in an Endometriotic Epithelial Cell Line.

    Get PDF
    Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells

    Impacts of streamflow alteration on benthic macroinvertebrates by mini‑hydro diversion in Sri Lanka

    Get PDF
    Our study focused on quantifying the alterations of streamflow at a weir site due to the construction of a mini-hydropower plant in the Gurugoda Oya (Sri Lanka), and evaluating the spatial responses of benthic macroinvertebrates to altered flow regime. The HEC-HMS 3.5 model was applied to the Gurugoda Oya sub-catchment to generate streamflows for the time period 1991-2013. Pre-weir flows were compared to post-weir flows with 32 Indicators of Hydrologic Alteration using the range of variability approach (RVA). Concurrently, six study sites were established upstream and downstream of the weir, and benthic macroinvertebrates were sampled monthly from May to November 2013 (during the wet season). The key water physico-chemical parameters were also determined. RVA analysis showed that environmental flow was not maintained below the weir. The mean rate of non-attainment was similar to 45% suggesting a moderate level of hydrologic alteration. Benthic macroinvertebrate communities significantly differed between the study sites located above and below the weir, with a richness reduction due to water diversion. The spatial distribution of zoobenthic fauna was governed by water depth, dissolved oxygen content and volume flow rate. Our work provides first evidence on the effects of small hydropower on river ecosystem in a largely understudied region. Studies like this are important to setting-up adequate e-flows

    Caspase-mediated cleavage of raptor participates in the inactivation of mTORC1 during cell death.

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis

    Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span.

    Get PDF
    Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were significantly quantified in livers of ad libitum, restriction- and re-fed rats, which summed up into 92% of the total protein mass of the cells. Compared to restriction, ad libitum cells contained significantly less mitochondrial catabolic enzymes and more cytosolic and ER HSP90 and HSP70 chaperones, which are hallmarks of heat- and chemically-stressed tissues. Following re-feeding, levels of HSPs nearly reached ad libitum levels. The quantitative and qualitative protein values indicated that the restriction regimen was a least stressful condition that used minimal amounts of HSP-chaperones to maintain optimal protein homeostasis and sustain optimal life span. In contrast, the elevated levels of HSP-chaperones in ad libitum tissues were characteristic of a chronic stress, which in the long term could lead to early aging and shorter life span

    Past and Present Environmental Factors Differentially Influence Genetic and Morphological Traits of Italian Barbels (Pisces: Cyprinidae)

    Get PDF
    Local adaptation and phenotypic plasticity can lead to environment-related morphological and genetic variations in freshwater fish. Studying the responses of fish to environmental changes is crucial to understand their vulnerability to human-induced changes. Here, we used a latitudinal gradient as a proxy for past and present environmental factors and tested its influences on both genetic and morphological patterns. We selected as a suitable biogeographic model, the barbels, which inhabit 17 Adriatic basins of the central-southern Italian Peninsula, and explored association among attributes from genetic, morphological, and environmental analyses. The analysis of the mitochondrial DNA control region evidenced a southward significant increase in the number of private haplotypes, supporting the isolation of the southernmost populations related to the Mio-Pleistocene events. In contrast, morphology was mainly affected by changes in the present environmental conditions. Particularly, the number of scales and fish coloration were clearly associated to latitude, and thus thermal and hydrological conditions. Other morphometric and functional traits varied under the selective pressure of other environmental factors like elevation and distance from headwater. These results highlight the sensitivity of barbels to climate changes, which can serve as a basis for future eco-evolutionary and conservation studies

    Fine-Tuning of Optimal TCR Signaling in Tumor-Redirected CD8 T Cells by Distinct TCR Affinity-Mediated Mechanisms

    Get PDF
    Redirecting CD8 T cell immunity with self/tumor-specific affinity-matured T cell receptors (TCRs) is a promising approach for clinical adoptive T cell therapy, with the aim to improve treatment efficacy. Despite numerous functional-based studies, little is known about the characteristics of TCR signaling (i.e., intensity, duration, and amplification) and the regulatory mechanisms underlying optimal therapeutic T cell responses. Using a panel of human SUP-T1 and primary CD8 T cells engineered with incremental affinity TCRs against the cancer-testis antigen NY-ESO-1, we found that upon activation, T cells with optimal-affinity TCRs generated intense and sustained proximal (CD3 zeta, LCK) signals associated with distal (ERK1/2) amplification-gain and increased function. In contrast, in T cells with very high affinity TCRs, signal initiation was rapid and strong yet only transient, resulting in poor MAPK activation and low proliferation potential even at high antigen stimulation dose. Under resting conditions, the levels of surface TCR/CD3e, CD8 beta, and CD28 expression and of CD3. phosphorylation were significantly reduced in those hypo-responsive cells, suggesting the presence of TCR affinity-related activation thresholds. We also show that SHP phosphatases were involved along the TCR affinity gradient, but displayed spatially distinct regulatory roles. While PTPN6/SHP-1 phosphatase activity controlled TCR signaling initiation and subsequent amplification by counteracting CD3. and ERK1/2 phosphorylation, PTPN11/SHP-2 augmented MAPK activation without affecting proximal TCR signaling. Together, our findings indicate that optimal TCR signaling can be finely tuned by TCR affinity-dependent SHP-1 and SHP-2 activity, and this may readily be determined at the TCR/CD3 complex level. We propose that these TCR affinity-associated regulations represent potential protective mechanisms preventing high affinity TCR-mediated autoimmune diseases

    Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates.

    Get PDF
    In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease

    Closely related dermatophyte species produce different patterns of secreted proteins.

    Get PDF
    Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Various species in this group of fungi show overlapping characteristics. We investigated the possibility that closely related dermatophyte species with different behaviours secrete distinct proteins when grown in the same culture medium. Protein patterns from culture filtrates of several strains of the same species were very similar. In contrast, secreted protein profiles from various species were different, and so a specific signature could be associated with each of the six analysed species. In particular, protein patterns were useful to distinguish Trichophyton tonsurans from Trichophyton equinum, which cannot be differentiated by ribosomal DNA sequencing. The secreted proteases Sub2, Sub6 and Sub7 of the subtilisin family, as well as Mep3 and Mep4 of the fungalisin family were identified. SUB6, SUB7, MEP3 and MEP4 genes were cloned and sequenced. Although the protein sequence of each protease was highly conserved across species, their level of secretion by the various species was not equivalent. These results suggest that a switch of habitat could be related to a differential expression of genes encoding homologous secreted proteins
    corecore