89 research outputs found

    North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations

    Get PDF
    Results of one of the most comprehensive paleomagnetic and supporting geological programs ever carried out in offshore SE Asia on North Luzon, northern Philippines, are reported. Six new results, based on 66 sites, are reported from a total collection of 243 individual sites. Declinations in the data subset are sometimes scattered, likely reflecting combinations of major plate and local rotations in both clockwise and counterclockwise directions, and thus have a somewhat limited value for tectonic modeling. The inclination data are, however, much more valuable and can be best explained if North Luzon traveled as part of the Philippine Sea Plate for most of its history, a scenario which is compatible with the known geology of the eastern Philippines and broader region. In the proposed model, for all of its Eocene-Pliocene history, North Luzon is placed on the western edge of the Philippine Sea Plate, effectively always just to the west of the site where the Benham Plateau formed ~40 Ma. The paleomagnetic data indicate a substantial northward migration of the area since the start of the Neogene, with an earlier interval stretching back to at least the mid-Early Cretaceous when this part of the plate occupied equatorial latitudes. Post-15 Ma motion of the plate has involved the indentation of the Palawan microcontinental block into the western side of the Philippine Archipelago. Deformations induced by this process offer the most likely explanation for the scattered declinations observed in North Luzon and areas a short distance to the south. Copyright 2007 by the American Geophysical Union.published_or_final_versio

    From orogenic collapse to rifting, structures of the South China Sea

    Get PDF
    The opening of the South China Sea has been a matter of debate for many years because of its internal structure, the differences between the conjugate margins and the variations of rifting and spreading directions. Although it is considered as being a back-arc basin, it is not sitting directly above a subduction zone, and the rifting process lasted for an unusually long duration. Among the specific characteristics is the early phase of rifting which took place early in place of the former Yanshanian andean-type mountain range. This stage is marked by narrow basins filled with deformed conglomerate, and initiated around 70My ago within a framework where the oblique subduction 
published_or_final_versio

    A Late Eocene- Oligocene through-flowing river between the Upper Yangtze and South China Sea

    Get PDF
    We test the hypothesis of a major Paleogene river draining the SE Tibetan Plateau and the central modern Yangtze Basin that then flowed South to the South China Sea. We test this model using U Pb dated detrital zircon grains preserved in Paleogene sedimentary rocks in northern Vietnam and SW China. We applied a series of statistical tests to compare the U-Pb age spectra of the rocks in order to highlight differences and similarities between them and with potential source bedrocks. Monte Carlo mixing models imply that erosion was dominantly derived from the Indochina and Songpan-GarzĂȘ Blocks and to a lesser extent the Yangtze Craton. Some of the zircon populations indicate local erosion and sedimentation, but others show close similarity both within northern Vietnam, as well as more widely in the Eocene Jianchuan, Paleocene-Oligocene Simao and Oligocene-Miocene Yuanjiang basins of China. The presence of younger (<200 Ma) zircons from the Qamdo Block of Tibet are less easily explicable in terms of recycling by erosion of older sedimentary rocks and imply a regional drainage linking SE Tibet and the South China Sea in the Late Eocene-Oligocene. Detrital zircons from offshore in the South China Sea showed initial local erosion, but with a connection to a river stretching to SE Tibet in the Late Oligocene. A change from regional to local sources in the Early Miocene in the Yuanjiang Basin indicates the timing of disruption of the old drainage driven by regional plateau uplift

    L’édification des chaĂźnes pĂ©ricratoniques, contraintes structurales et cinĂ©matiques appliquĂ©es aux reconstructions de l'Asie du SE sur SIG

    Get PDF
    Le SE asiatique est un chantier qui permet d’étudier la formation des chaĂźnes de montagnes situĂ©es au dessus des zones de subduction Ă  diffĂ©rents stades de leur Ă©volution. Dans ces rĂ©gions, la cinĂ©matique des plaques est extrĂȘmement rapide, souvent de l’ordre de 10 cm/an, et la convergence engendre l’ouverture, elle aussi rapide, de bassins marginaux qui fragmentent sous forme de laniĂšres les masses continentales. Les fragments ainsi sĂ©parĂ©s comportent donc un substratum gĂ©nĂ©ralement constituĂ© de matĂ©riel correspondant Ă  des ophiolites de supra subduction (arc, avant-arc, arriĂšre- arc) ainsi que des reliques de croĂ»te continentale. Ce type de mĂ©canisme aboutit Ă  la formation de plaques Ă©tirĂ©es qui peuvent ĂȘtre soit de nature ocĂ©anique comme pour la plaque Philippine [Karig, 1975] formĂ©e de bassins arriĂšre-arcs ouverts Ă  l’EocĂšne (Bassin ouest-philippin), puis Ă  l’Oligo-MiocĂšne (bassin de Parece Vela/Shikoku), et au PliocĂšne (bassin des Mariannes) [Le Pichon et al., 1975] ; bassin de Damar [Hinschberger, 2001]), soit de nature continentale comme dans le cas des marges Australienne et Eurasiatique [Rangin et Pubellier, 1990 ; Rangin et al., 1990] (fig. 1). Dans ce dernier cas, la configuration rĂ©sultante est celle d’une marge Ă©tirĂ©e Ă  la façon d’un Ă©ventail depuis le PalĂ©ocĂšne jusqu’au MiocĂšne moyen. Ce mĂ©canisme gĂ©nĂšre des bassins diachrones ouverts vers l’est, avec un propagateur vers le sud-ouest comme cela est visible dans l’ouest de la mer de Chine [Huchon et al., 1998], et est dĂ©duit pour la mer des CĂ©lĂšbes et son prolongement dans le dĂ©troit de Makassar [Moss and Chambers, 1999]. Cet Ă©tirement prenait lui-mĂȘme la suite de l’écroulement gravitaire de la chaĂźne Yenshanienne depuis le CrĂ©tacĂ© supĂ©rieur, qui marquait la fin d’un processus similaire d’accrĂ©tion de blocs gondwaniens au cours du MĂ©sozoĂŻque [Metcalfe, 1996 ; Sewell et al., 2000]. L’ensemble du bloc de la Sonde, avec ses bassins marginaux est soumis Ă  un raccourcissement depuis le dĂ©but du MiocĂšne [Rangin et al., 1990], les bassins marginaux rentrant en subduction, et certains blocs basculĂ©s de la marge passive Ă©tant en cours d’accostage contre la marge continentale. De mĂȘme que l’ouverture des bassins s’était effectuĂ©e de maniĂšre diachrone, le serrage des bassins s’effectue lui aussi de façon diachrone. Les mĂ©canismes actifs de convergence par subduction et les blocages sont maintenant bien connus, la prĂ©cision des rĂ©cepteurs GPS, et surtout la rĂ©pĂ©tition des mesures depuis prĂšs de dix ans permettant de bien contraindre les dĂ©placements instantanĂ©s. Nous avons utilisĂ© principalement les vecteurs GPS du programme GEODYSSEA [Michel et al., 2001]. ParallĂšlement, les Ă©tudes de tomographie sismique imagent des anomalies positives de vitesse dans le manteau pouvant indiquer des lithosphĂšres subductĂ©es. C’est le cas de la proto mer de Chine Sud, parallĂšle Ă  l’actuelle mer de Chine du Sud et probablement de gĂ©omĂ©trie similaire, maintenant disparue par subduction [Rangin et al., 1999b ; Prouteau et al., 2001]. Dans cet article, les mouvements dĂ©duits du GPS ont Ă©tĂ© utilisĂ©s comme base cinĂ©matique jusqu’à l’ñge de la derniĂšre dĂ©formation marquante, pour chaque bloc des ceintures dĂ©formĂ©es. L’évolution des marges a Ă©tĂ© revue de maniĂšre globale sur l’ensemble de l’Asie du SE, de façon Ă  prĂ©senter des coupes structurales synthĂ©tiques,avant et aprĂšs raccourcissement (fig. 3 Ă  10). Ces coupes montrent que l’arrivĂ©e des blocs continentaux dans les zones de subduction entraĂźne un blocage, puis le plus souvent un saut de subduction qui intĂšgre le bloc Ă  la marge en crĂ©ant une dĂ©formation de la plaque supĂ©rieure [Dominguez et al., 1998 ; Pubellier et al., 1999 ; Von Huene et al., 1995 ; Ranero et al., 2000]. Une base de donnĂ©es sur l’Asie du Sud-est est utilisĂ©e dans les reconstructions, mais seulement une partie est reprĂ©sentĂ©e sur les planches 1 Ă  6 (topographie-bathymĂ©trie, principales failles). La base complĂšte comprend aussi bien les failles actives et anciennes, que la topographie des chaĂźnes de montagnes, la morphologie des fonds sous-marins, la gravimĂ©trie Ă  l’air libre, les vecteurs de dĂ©placement GPS en diffĂ©rents points Ă  partir du calcul du meilleur pĂŽle eulerien correspondant au mouvement de chaque bloc, les Ă©paisseurs des sĂ©diments dans les bassins, ou encore la localisation des profils sismiques utilisĂ©s. L’utilisation d’un systĂšme d’information gĂ©ographique permet de restituer les dĂ©placements des plaques ou des micro-blocs crustaux, soit Ă  l’aide des vitesses angulaires, soit de façon interactive. Cette dĂ©marche permet de choisir entre plusieurs hypothĂšses gĂ©ologiques en gardant une cohĂ©rence d’ensemble. Les palĂ©o- distances gĂ©odĂ©siques entre les blocs peuvent ĂȘtre mesurĂ©es, et les chaĂźnes de montagnes comme TaĂŻwan ou la ChaĂźne centrale de Nouvelle GuinĂ©e ont Ă©tĂ© Ă©tirĂ©es pour retrouver l’espace qu’elles occupaient vraisemblablement avant leur formation. Dans les reconstructions, la profondeur des bassins correspond aux valeurs actuelles, et n’a pas Ă©tĂ© restaurĂ©e en fonction du temps. Enfin, nous n’avons pas Ă©tendu les reconstructions Ă  l’Himalaya et au Tibet, les mouvements verticaux Ă©tant trop importants. Les reconstructions effectuĂ©es Ă  2, 4, 6, 10, 15 et 20 Ma (planches 1 Ă  6) montrent que les parties continentales des plaques Sunda et Australie ; (SU/AU) s’éloignent l’une de l’autre, alors que la plaque philippine continue de “brosser” la plaque de la Sonde [Rangin et al., 1990], en transportant vers l’ouest des fragments formĂ©s au nord de la plaque australienne. Il s’agit donc d’un article qui prĂ©sente une gĂ©nĂ©ralisation de processus gĂ©odynamiques de fonctionnement des marges actives, et dont le but est de donner une image cohĂ©rente de l’accrĂ©tion de blocs aux bordures des continents, et qui a nĂ©cessitĂ© des choix dans les options souvent dĂ©battues de l’évolution au deuxiĂšme ordre de secteurs d’importance locale

    Receiver function study in northern Sumatra and the Malaysian peninsula

    Full text link
    International audienceIn this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities () near the surface in the range of 3.4-3.6 km s attributed to crystalline rocks and 3.6-4.0 km s in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30-34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low of 2.6-2.9 km s indicate sediment layers. High of 4.2 km s are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in between 10 and 20 km depth. Within the subducting slab ≈ 4.7 km s. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found

    Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Get PDF

    Silikatschichten auf Aluminium und Aluminiumlegierungen

    No full text

    The basins of Sundaland (SE Asia): Evolution and boundary conditions

    No full text
    International audienc

    Key Structural Elements around the East Vietnam Sea (South China Sea) and implications on reconstructions: towards a clarification

    No full text
    International audienceThe East Vietnam Sea (EVS) or the South China Sea (SCS in this paper) is one of the best-studied basins in the world and one of the largest marginal basins. If the mechanisms of rifting and spreading are well documented and invoke many specific aspects of structure and evolution, it has nevertheless been highly controversial in terms of its relationships with the neighboring basins; some of which have partly or entirely disappeared. This paper recapitulates the critical structural elements, such as the localization of magmatic activity and rifted basins from the Cretaceous to the Present, to evaluate the arguments for the reconstructions. We begin with the location of the Cretaceous magmatic arc along the Vietnam and China margins to discuss the setting and timing of the subduction of an oceanic domain which is unlikely to be the Proto South China Sea (PSCS) itself. This evolution raises the question of the existence and modalities of docking of the Argo and Luconia blocks and requires an intensive stretching of this early docked continental basement before seafloor spreading in the PSCS and the Celebes Sea from the end of Cretaceous to the Oligocene. The SCS was the latest basin to open within the continental margin and is believed to have developed within the downgoing plate. The crustal blocks separated by rifting and sea-floor spreading were later shortened from the Early Miocene to the Present, leaving the appearance of a complex tectonic system. This exercise indicates simple solutions which had not been stated previously, such as the possible connection between the Tethys Ocean and an oceanic domain between the PSCS and the coastal regions of China and Vietnam. The PSCS developed later toward the South, probably in a back-arc position, and the EVS opened amid this system intrinsically linked to the subduction of the PSCS
    • 

    corecore