51 research outputs found

    Internet Daters’ Body Type Preferences: Race–Ethnic and Gender Differences

    Get PDF
    Employing a United States sample of 5,810 Yahoo heterosexual internet dating profiles, this study finds race–ethnicity and gender influence body type preferences for dates, with men and whites significantly more likely than women and non-whites to have such preferences. White males are more likely than non-white men to prefer to date thin and toned women, while African-American and Latino men are significantly more likely than white men to prefer female dates with thick or large bodies. Compatible with previous research showing non-whites have greater body satisfaction and are less influenced by mainstream media than whites, our findings suggest Latinos and African Americans negotiate dominant white idealizations of thin female bodies with their own cultures’ greater acceptance of larger body types

    Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells

    Get PDF
    Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions

    Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite <i>Plasmodium berghei</i>

    Get PDF
    During malaria infection, Plasmodium spp. parasites cyclically invade red blood cells and can follow two different developmental pathways. They can either replicate asexually to sustain the infection, or differentiate into gametocytes, the sexual stage that can be taken up by mosquitoes, ultimately leading to disease transmission. Despite its importance for malaria control, the process of gametocytogenesis remains poorly understood, partially due to the difficulty of generating high numbers of sexually committed parasites in laboratory conditions1. Recently, an apicomplexa-specific transcription factor (AP2-G) was identified as necessary for gametocyte production in multiple Plasmodium species2,3, and suggested to be an epigenetically regulated master switch that initiates gametocytogenesis4,5. Here we show that in a rodent malaria parasite, Plasmodium berghei, conditional overexpression of AP2-G can be used to synchronously convert the great majority of the population into fertile gametocytes. This discovery allowed us to redefine the time frame of sexual commitment, identify a number of putative AP2-G targets and chart the sequence of transcriptional changes through gametocyte development, including the observation that gender-specific transcription occurred within 6 h of induction. These data provide entry points for further detailed characterization of the key process required for malaria transmission

    The ontogeny of antipredator behavior: age differences in California ground squirrels (Otospermophilus beecheyi) at multiple stages of rattlesnake encounters

    Full text link
    Newborn offspring of animals often exhibit fully functional innate antipredator behaviors, but they may also require learning or further development to acquire appropriate responses. Experience allows offspring to modify responses to specific threats and also leaves them vulnerable during the learning period. However, antipredator behaviors used at one stage of a predator encounter may compensate for deficiencies at another stage, a phenomenon that may reduce the overall risk of young that are vulnerable at one or more stages. Few studies have examined age differences in the effectiveness of antipredator behaviors across multiple stages of a predator encounter. In this study, we examined age differences in the antipredator behaviors of California ground squirrels (Otospermophilus beecheyi) during the detection, interaction, and attack stages of Pacific rattlesnake (Crotalus oreganus) encounters. Using free-ranging squirrels, we examined the ability to detect free-ranging rattlesnakes, snake-directed behaviors after discovery of a snake, and responses to simulated rattlesnake strikes. We found that age was the most important factor in snake detection, with adults being more likely to detect snakes than pups. We also found that adults performed more tail flagging (a predator-deterrent signal) toward snakes and were more likely to investigate a snake’s refuge when interacting with a hidden snake. In field experiments simulating snake strikes, adults exhibited faster reaction times than pups. Our results show that snake detection improves with age and that pups probably avoid rattlesnakes and minimize time spent in close proximity to them to compensate for their reduced reaction times to strikes

    Human oestrus

    No full text
    For several decades, scholars of human sexuality have almost uniformly assumed that women evolutionarily lost oestrus—a phase of female sexuality occurring near ovulation and distinct from other phases of the ovarian cycle in terms of female sexual motivations and attractivity. In fact, we argue, this long-standing assumption is wrong. We review evidence that women's fertile-phase sexuality differs in a variety of ways from their sexuality during infertile phases of their cycles. In particular, when fertile in their cycles, women are particularly sexually attracted to a variety of features that likely are (or, ancestrally, were) indicators of genetic quality. As women's fertile-phase sexuality shares with other vertebrate females' fertile-phase sexuality a variety of functional and physiological features, we propose that the term oestrus appropriately applies to this phase in women. We discuss the function of women's non-fertile or extended sexuality and, based on empirical findings, suggest ways that fertile-phase sexuality in women has been shaped to partly function in the context of extra-pair mating. Men are particularly attracted to some features of fertile-phase women, but probably based on by-products of physiological changes males have been selected to detect, not because women signal their cycle-based fertility status
    corecore