42 research outputs found

    Computing pseudotriangulations via branched coverings

    Full text link
    We describe an efficient algorithm to compute a pseudotriangulation of a finite planar family of pairwise disjoint convex bodies presented by its chirotope. The design of the algorithm relies on a deepening of the theory of visibility complexes and on the extension of that theory to the setting of branched coverings. The problem of computing a pseudotriangulation that contains a given set of bitangent line segments is also examined.Comment: 66 pages, 39 figure

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    Query Processing in Spatial Databases Containing Obstacles

    Get PDF
    Despite the existence of obstacles in many database applications, traditional spatial query processing assumes that points in space are directly reachable and utilizes the Euclidean distance metric. In this paper, we study spatial queries in the presence of obstacles, where the obstructed distance between two points is defined as the length of the shortest path that connects them without crossing any obstacles. We propose efficient algorithms for the most important query types, namely, range search, nearest neighbours, e-distance joins, closest pairs and distance semi-joins, assuming that both data objects and obstacles are indexed by R-trees. The effectiveness of the proposed solutions is verified through extensive experiments

    The Visibility Complex

    No full text
    We introduce the visibility complex (rr 2-dimensional regular cell complex) of a collection of n pairwise disjoint convex obstacles in the plane. It can be considered as a subdivision of the set of free rays (i.e., rays whose origins lie in free space, the complement of the obstacles). Its cells correspond to collections of rays with the same backward and forward views. The combinatorial complexity of the visibility complex is proportional to the number k of free bitangents of the collection of obstacles. We give sn O(nlogn + k) time and O(k) working space algorithm for its construction. Furthermore we show how the visibility complex can be used to compute the visibility polygon from a point in O(mlogn) time, where m is the size of the visibility polygon. Our method is based on the notions of pseudotriangle and pseudo-triangulation, introduced in this paper
    corecore