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Abstract 

We study enumeration and visibility problems 

in the d-dimensional integer lattice L! of d
t uples of integers :5 n. In the first part of the 

paper we give several useful enumeration prin
ciples and use them to study the asymptotic be

havior of the number of straight lines traversing 

a certain fixed number of lattice vertices of L~, 
the line incidence problem and the edge visibil

ity region. In the second pa.rt of the pa.per we 
consider an art gallery problem for point ob

stacles. More specifically we study the camera 

placement problem for the infinite lattice L 11 • 

A lattice point is visible from a camera C (po

sitioned a.t a vertex of L 11 ) if the line segment 
joining A and C crosses no other lattice vertex. 

For any given number s :5 311 of cameras we de
termine the position they must occupy in the 

lattice L 11 in order to maximize their visibility. 
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1 Introduction 

The present paper is concerned with several 

enumeration and visibility problems in multi
dimensional integer lattices. Before providing 

an outline of the main results of the paper we 
remind the reader that ((z) denotes the Rie

mann zeta. function, :En>l n - =, lzl > 1, while 

L 11 (respectively, L~) is the complete lattice of 
d-tuples of non-negative integers (respectively, 

:5 n), where d 2:: 2. 
In the first part of the paper we a.re deal

ing with several enumeration problems which 
arise in the analysis of algorithms of combi

natorial and computational geometry. These 
include: (1) the asymptotic number of dif

ferent straight lines traversing a.t least k ver

tices of d-dimensional lattices, simplexes, etc., 

(2) the expected length and standard devia
tion of maximal (or other kinds of) segments 

of d-dimensiona.l latt ices, simplexes, etc., (3) 

the maximum number of incidences /(m,n) be
tween m points and n lines in the plane [ST83) 

[Ede87, chapter 6), [CEG+88, page 13), and (4) 

the complexity of computing the region of the 
plane illuminated by a line segment in the pres

ence of other line segments (edge visibility re

gion) [O'R87, pages 219-223]. We show how 
to compute asymptotically optimal bounds for 

problems (1 ), (2) and exact constants of known 
lower bounds for problems (3) and (4). 

Underlying several themes of our present 
study we will encounter in the sequel several 

applications of generalizations of an old theo
rem, from 1849, of G. Lejeune Dirichlet. The 



theorem states that the probability that two 
integers chosen at random are relatively prime 
is 1/((2) [Knu81, page 324], [HW79, page 269]. 
This result can also be stated as follows: if Ll is 
a bounded plane region with area area{A) and 
G(A) is the set of lattice points of A whose 
coordinates are relatively prime then 

IG(Ll)I ,...., area(Ll) 
((2) 

as Ll grows by homothety to the full plane (see 
[HW79, page 409]). It turns out that our anal
ysis of the above mentioned problems requires 
the asymptotic evaluation of multidimensional 
versions of sums of the form LPEG(.6.) f(P) 
in terms of J6 f, where f is a real function 
(monotone or Lipschitzian). Intuitively one can 
think of the function f(P) as a weight "quan
tifying" the visibility of the point P from the 

origin while the sum EPeG(ll) f (P) "quanti
fies" the "total" visibility from the origin. The 
estimates obtained via these results will be es
sential in our subsequent study of the second 
part of the paper. After proving the required 
extension we proceed with the precise evalua
tion of the above mentioned quantities. 

In the second part of the paper we consider 
visibility questions on multidimensional inte
ger lattices. Two points x and y of the d
dimensional lattice Ld are mutually visible (or 
can see one another) if there is no lattice point 
on the line segment joining them. If Sis a set of 
lattice points we denote by V,.(S) (respectively, 
U,.(S)) the set of lattice points which are visi
ble from every {respectively, some) point of S. 
There have been several interesting results in 
the literature concerning visibility problems. 

F. Herzog and B. M. Stewart [HS71] con
sider the problem of realizability of patterns 
of visible and nonvisible lattice points. A pat
tern Pa. in the d-dimensional lattice is defined 
to be an assignment of circles and crosses to 
the lattice points. They study the question 
of realizability of patterns, i.e. given a pat
tern Pa. does there exist a point u in the lat
tice such that a point u + x is visible (re
spectively, nonvisible) whenever x is a point 
of Pa marked with a circle (respectively, cross). 
In fact they show that a pattern Pa. is real
izable if and only if for any prime p the set 
{(x1 modp, ... , xa. modp) : (x1, ... , xa.) E C} 
is not a complete set of representatives modulo 
p on d-tuples of integers, where C is the set of 
circles of Pa.. 
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H. Rumsey [Rum66] studies the density of 

the set V(S) = U,. V,.(S), for S an arbitrary 
subset of Ld. Call two points x, y of the lattice 
p-equivalent if and only if x = y mod p. Let 
[x]p be the equivalence class of a point x and 
let S/p be the set of equivalence classes [x],, 
with x ES. Then Rumsey shows (generalizing 
the above mentioned theorem of Dirichlet) that 
for any finite set S of lattice points the density 
of the set V(S) is given by the infinite product 

II (1 - /S/:'), 
pEP p 

where 'P is the set of prime numbers. In fact 
Rumsey gives a caracterisation of the sets S 
for which the above formula is true. It should 
also be mentioned that the above formula for 
the density of ll(S) was previously obtained 
by Rearick [Rea60] for /SI = 2 and when the 
points of S are pairwise visible. 

H. I. Abbott [Abb74] considers the problem 
of determining the minimum number /(n) of 
cameras which are necessary in order to see all 
the points of the 2-dimensional lattice L;, i.e. 
f(n) =minimum s such that for some set S of 
s lattice points V,.(S) = L;. He shows that 

Inn 
2lnlnn <f(n)<4lnn. 

The lower bound result follows easily by ap
plying the Chinese remainder theorem. For 
the upper bound Abbott constructs recursively 
a sequence x1, x2, ... , x1c such that for each i, 
Xi+l is a point x in the lattice L; for which the 
set-theoretic difference 

is of maximal size and shows that k = O(ln n) 
iterations of this procedure suffice in order to 
cover all the vertices of the lattice. His method 
however gives no indication on how to locate 
"quickly" these points on the lattice. Neverthe
less, he also shows using work of Erdos [Erd62] 
that there exists a constant a > 0 such that 
for n sufficiently large every point of the lat
tice L; is visible from the set {(1,0)}U{(O,j): 
j = 0, 1, ... , k }, where k = O(lna n). However, 
this last configuration is far from optimal, as 
we will show later. It is straightforward to see 
that his methods extend easily in order to yield 
similar results for the d-dimensional lattice L!. 

In the present paper we are concerned with 
a slightly different problem; the camera place
ment problem in multidimensional lattices. We 



are given s cameras C1, ... , C. which are sup
posed to be located on the nodes of the d
dimensional lattice L~. We are interested in 

determining a set S = {A 1 , •. • , A.} of posi
tions (lattice points) for these cameras in such 
a way that if camera ci is positioned at lo
cation Ai, for i = 1, ... , s, then the number of 
lattice points visible by at least one of the cam
eras is maximized, i.e. under what conditions 

on the set S of possible camera locations is the 

quantity IUn(S)I maximized? 
It is easy to see (using the above mentioned 

theorem of Dirichlet) that in the case of a single 
camera and any location A, IVn(A)I = IUn(A)I 

d 

is asymptotically equal to it;f;· Moreover, it 

can be shown that the set of lattice points 
visible from a fixed location A contains arbi
trarily large cubic gaps [Apo76, theorem 5.29], 
(Rad64], (HS71], i.e. for any integer k > 0 there 
exists a lattice point P = (p1, ... , Pd) such that 
none of the points in the cube {P + x : 1 :5 
Xi $ k} is visible from A. This immediately 
raises the question of where to locate an addi
tional camera in order to maximize visibility. If 
s = 2 then it is still not hard to show using the 
principle of inclusion/exclusion that the opti
mal visibility for two cameras is achieved when 
the two cameras are pairwise visible. 

The second part of the paper begins with an 
extension of Rumsey's work on the density of 
visibility sets which is suitable to our analysis 
of the camera placement problem. We study 
the general case of this problem both for finite 
(using sieve methods which enable us to count 
the number of points of a set not belonging 
to certain prescribed subsets) and infinite (us
ing probabilistic methods) lattices. We give a 
necessary condition for an arbitrary set S of s 

cameras to be in optimal configuration, namely 
that for every prime p with s :5 pd the cameras 
are pairwise p-visible. This implies that for any 
s :5 2d, the number of points visible from s 

cameras is maximized exactly when the camera 
positions are pairwise visible. Thus although 
the above cited theorem of Abbott implies that 
for n large enough (actually, 2d :5 In n /2 ln In n) 

it is impossible to see all the points of L! with 
only 2d cameras, the optimal configuration of 
2d cameras is achieved exactly when the cam
eras are pairwise visible. For example, as an 
immediate consequence of our results, straight
forward calculations show that with four cam
eras in "pairwise visible" (which is also the op
timal) configuration one can see (asymptoti-
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cally in n) about 99,86 percent of the points 
of L~. In addition we show that the optimal 
configuration for s ~ 3d cameras is obtained 

exactly when the cameras are p-visible for all 

p > 2 and each equivalence class x E S/2 has 
either Llxl/2dj or flxl/2dl elements. 

Algorithmic aspects for the finite lattices L!, 
further extensions to arbitrary s and detailed 
proofs of these results will be given in the full 

version of the paper (KP90]. 

2 Enumeration 
in Lattices 

Problems 

The enumeration problems considered in this 
section will turn out to be consequences of 
enumeration principles regarding the number 
of lattice points inside a convex compact set. 
Subsection 2.1 includes our general enumera
tion theorems while subsection 2.2 gives the fol
lowing applications: (1) enumerating the num
ber of different lines each traversing k ver
tices of the d-dimensional lattice L!,(2) com
puting the expected lenght and standart devi
ation of maximal (or other kinds) segments of 
d-dimensional lattices, simplexes, etc.,(3) enu
merating the maximum number of incidences 
between m points and n lines in the plane, and 
(4) analysing the edge visibility region. The es
timates obtained in the theorems below will be 
very useful in our analysis of the camera place
ment problem for finite lattices. 

2.1 General Results 

In this subsection we abbreviate by L the com
plete lattice of d-tuples of non-negative integers 
(d ~ 2). Let A be a convex compact subset of 
JR.d and let f be a real function on~. Let G(A) 
be the set of lattice points x = (x1 , .•. , Xd) in 
A such that gcd(x 1 , .•. , xd) = 1. We would like 
to find an estimate on the sum EPeG(~) f(P). 
We prove the following two theorems which can 
be useful in many lattice enumeration prob
lems. 

Theorem 2.1 Let~ be a convex compact sub
set of JR.d. Let f be a real positive continuous 

/unction on A which is monotone in all its ar
guments. Then we have that 

L f(P) - -
1
- . [ f = 

PEG(~ ) ((d) j ~ 



! '!" : ='~ - - . 

( { 
c5 log c5 if d = 2 ) 

O max f · c5d- l otherwise 

where c5 is the diameter of A. 

Theorem 2.2 Let A be a convex compact sub
set of JRd . Let f be a real positive function on 
A which satisfies the Lipschitz condition 

A 
lf(x) - /(y) I < 

= sup I I oo. 
z"t.11 X - Y 

Then we have that 

L f(P) - ((ld) · 1 f = 
P EG(A) A 

( { 
c5 log c5 

0 (6 ·A+ maxi)· 6t1. - 1 
if d = 2 ) 
otherwise 

where c5 is the diameter of A. 

We first prove a lemma. 

Lemma 2.1 Under the assumptions of theo
rem 2.1 we have that 

1
1 f - L f(P)' = O(c5d-l ·maxi) 

A P EA1 

Proof. First it will be necessary to extend f 
on !Rd. We may assume, without loss of gen
erality, that f is non-decreasing. Extend f on 
JRd by setting /(:r:) := inf{f(y): y E A,x ,=5 y} 
with the convention inf 0 = sup A J. It is no 
hard to prove that the extension is still posi
tive, non decreasing, upper semicontinuous and 

that sup.R" f = supA /. 
T he proof given here is a generalization of 

the proof of t he main result in [Nos48). Let 
S be the square with corners the 2t1. points 
(x1 , • • . , xt1.) where Xi = 1, 0. For each lattice 
point p let s-;, be the square p + s and s-p be 
the square P - S. Put 

A = {P: d(P, 8A) $ Vd} 

and let A+ = A U A, A - = A - A. It is not 
difficult to show that 

2. UPe A, s-p ::) A -

3. A+ \A- CA 

4. A - c Ac A + 
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Hence we have that 

1 1 < r 1. 
UPe.o. , st - }A+ 

Here we used f(P) = minQest f(Q) which fol
lows from the monotonicity of the function J. 
Similarly we have that 

J, r~ 1 f . 
UPe.o. , s; A -

Also here we used J(P) = maxQes; f(Q) 
which follows from the monotonicity of the 
function f. By combining the last two inequal
ities we obtain that 

Ii f - P~, f(P) l .=5 l+ f - l -f .=5 JA1. 
Moreover we have that 

kl .=5 area(A) · ~axf $ area(A) · m;;x.f· 

Next we prove that area( A) = O(c5d- l ). In
deed since A is convex the area of A is less than 
2 times the area of A \ A. Using the Steiner
Minkowski formula [BZ88, page 141J or (Ber78, 
pages 98 and 147], we obtain that the area of 
this last set can be written as 

i = tl. 

area(A \A) = Ll;(A) · dt. (1) 
i = l 

Furthermore it is well-known that the functions 
li(.) are bounded over the set of convex sub
sets of the unit ball and verify the identities 
l i (kA) = kd- ili (A). Hence we can write {as
suming, without loss of generality, that 0 E A.) 

area( A\ A) ~ tl. . 1 i 
Lc5 - •.f.; ( -g·A)·d2 
i::l 

which completes the proof of our lemma. D 
Proof of theorem 2.1. Let Ai. = An k · L 

the set of lattice points of A whose coordinates 
are divisible by k. By using the observations 



and 

where p ranges over primes, and a standard 

sieve argument (see, for example, (Nar83]) we 

can show that 

L f(P) = LJL(k). L f(P) 

PeG(6) k~l PE6~ 

where µ is the Mobius function. Now we use 

the previous lemma in order to estimate the 

sum :EPea. f(P) above. Let hk(P) = k · P. 

Then using the fact that D.k = k( i D. n L), for 

k 2:: 1, we obtain 

L f(P) = L f ohk(P) 

Pe6• Pet6nL 

Hence it follows from the previous lemma that 

O (< ~ )d- l · maxf o hk) 
k t6 

Trivial calculations show that 

maxf o hk = maxf, 
t6 6 

h6 f 0 hk = :d · l f 

It follows easily by summing over k that 

0 (L(~)d-1 ·mtxf). 
k$6 

The right-hand side is readily simplified to 

0 ( f { 6 logo if d = 2 ) 
m:x . od- l otherwise 

Using the well-known identities 

µ(k) 1 
L:-v = ((d)' 
k~ l 

I µ(k) I ( 1 ) 2: k""d = 0 od-1 . 
k>6 

·----------
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e.g. see [Knu81, exercise 10, section 4.5.2], and 

area( D.) = 0(6d) the proof of the theorem can 

be completed without difficulty. D 

The proof of theorem 2.2 is similar; for de

tails see [KP90]. We will make use of theorems 

2.1 and 2.2 for functions of polynomial type on 

a convex domain. However it is worth men

tioning that our results extend to non-convex 

rectifiable domains in the plane Hl2 • In that 

case the error term that appears in theorems 

2.1 and 2.2 is expressed as a function of the 

area and the length of the domain instead of 

its diameter [KP90]. 

2.2 Applications 

The enumeration principles proved in the pre

vious section can be applied to many problems 

in combinatorial and computational geometry. 

2.2.1 Computing the Number of Lines 

As a first application of theorem 2.1 we enu

merate the number of different lines traversing 

at least k +I lattice points of the d-dimensional 

cube, the d-dimensional simplex of size n or a 

product of simplexes of lower dimension. We 

formalize this as follows. Let .:J be a partition 

of { 1, ... , d} and let n be a function of .:J into 

Z. Set 

V(n) = {x : 0 5 LXi < n1, VIE .:J}, 
iE J 

where x = (x1, ... , xd) runs over d-tuples of 
integers. 

For example we easily obtain from the above 

definition that the domain V( {i}-+ n) is the d
dimensional grid of size n while V( { 1, ... , d} -+ 
n) is the d-dimensional simplex of size n. In 

general V(n) is the product of l.:JI simplexes of 

corresponding dimensions III, for I E .:J. Let 

c5(n, k) be the number of different lines of posi

tive slope each traversing at least k + 1 lattice 
points of the domain V(n). The following the
orem gives an asymptotic evaluation of c5(n, k). 

Theorem 2.3 
Let .:J be a partition of {1, ... , d} and let n be 

a function of .:J into Z. The number 6(n,k) 
of different straight lines of positive slope each 

traversing at least k + 1 different lattice points 

of the domain V(n) is given by the formula 

1 n~· l l l { 1 1 } 

((d) . Q. (2 ·III)! . kd - (k + 1)d 

;=.::;:.;;.i_=_-.. . ___ _ 



({ 
ef.1 ~ 

+o k' og k 
! n !~:-1 

if d = 2 ) 
otherwise 

where lnl = sup,:rn. 
Proof. (Outline) Let p = (pi, . . . ,pd) be a 
given slope such that gcd(p) = 1 and let S(p, k) 
be the set of lines each traversing at least k + 1 
different lattice points of 'D( n). It is then clear 
that 

6(n, k) = L gk(p,n), (2) 
gcd(p)= l 

where gk(P, n) is the cardinal of the set S(p, k). 
Therefore we expect that the theorem will fol
low from the above identity and theorem 2.1 or 
2.2. Indeed we can show that gk(P, n) is a poly
nomial expression of the coordinates p1, ... , Pd 

of p and that mB.XpeB-'9i.(p,n) = 0(¥) and 
max .i llgi.(p,n) = O(lnld- l)· for details see 

pE.IR lip; ' 

[KP90].D 
The following result is a generalization of the 

previous theorem and, furthermore, it natu
rally comes along with the study of length of 
segments of a grid. 
Theorem 2.4 let h be a real positive homo
geneous function of degree a ~ 1 which is C 1 

on (JRi.)" and let S(p, k) be the set of lines of 
poaitive slope p = (pi, ... , Pd) each traveraing 
at least k + 1 different lattice points of the d
dimensional grid of size n. The number 

6(h,n,k)= L h(p)·IS(p,k)I 
gcd(p)=l 

is given by the formula 

n"+2d 1 1 
((d) . ( k"+d - (k + l)"+d) . w(h) 

+o ({ if d = 2 ) 
otherwise 

where 

Proof. (Outline) Elementary calculus shows 
that the function h(p) . IS(p, k )I is 0( n

4z:-l )
Lipschitz on the d dimensional grid. Then the 
result follows by application of theorem 2.2. 0 

The above theorem can also be used for the 
calculation of the expected length and stan
dard deviation of maximal segments in the d
dimensional lattice L~ [KP90]. 
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2.2.2 Analysis of the Incidence Problem 

We conclude this section by an application of 
our theorem 2.2 to the computation of con
stants occurring in lower bounds of two com
binatorial problems arising in Computational 
Geometry. The first problem is the incidence 
problem in arrangement of lines as defined in 
[ST83],[Ede87, chapter 6] or [CEG+ss]. 

In [ST83] it is shown that the maximum 
number of incidences, I(m,n), between m 
points and n lines in the plane is 

0{m213n213 + m + n), 

moreover we can read in [CEG+ss, page 13] 
that 

I(m, n) ~ 3Wm213 n 213 + 25n + 2m. 

Here we prove the following result. 

Theorem 2.5 If 

then for all f > 0 we have for m and n suffi
ciently large 

Proof. (Outline) The lower bound example 
of [Ede87, chapter 6] is based on arranging the 
points in a square grid and choosing the lines 
close to highly populated rows of points. We 
follow this example and apply the theorem 2.1 
to make precise computations. Let l be a line 
of the grid of size p (,..., v'ffi). We denote by 
contr(l) the number of points of the grid that 
lie on l. Let L be the set of lines of slope (pos
itive and negative) 5 ap of the grid and na 
the number of such lines. The real °' is to be 
later determinated so that n ,..., na. We put 
contr(L) = EteL contr(l). Using theorem 2.1 
we get 

and 

1 
contr(L) = ((

2
)p4 

• f2(a) + O(ap3 logap) 

where fi(a) and f2(a) are polynomial expres
s10ns ma. 



Combining the two previous equations and 
the fact that contr(L) is a lower bound for 
I(p2, na) we can show that 

1. . I(m, n) ( )/ ) 113 immf 
213 213 

~ ((2 2 - , 
m,n.-+oo n m 

which completes the proof of the theorem; see 

[KP90] for details. 0 

2.2.3 Analysis of the Edge Visibility 
Region 

The second problem we want to analyse is 
the Edge visibility region as defined in [0'R87, 
pages 219-223]. The problem is to compute the 
region of the plane illuminated by a line seg
ment in the presence of other line segments. 
Suri and O'Rourke [S086] establish a worst
case lower bound of S'l(n4 ) for constructing this 
region where n is the number of segments. 
They propose two configurations: the Integer 
and the Rational Configuration. Their analy
sis of the Integer Configuration is based on the 
evaluation of the number N(n) of distinct inter
sections lying in the half-plane y > 2 between 
lines passing through points (1,i) and (2,j) for 
0 ~ i,j < n. In [O'R87, S086] it is shown that 
a lower bound for this number is the sum 

S(n) := min(b, n - b) · (n - b), 
4$b:S n,gcd(4,b)= 1 

which is then evaluated as a n(n4 ) using the 

identity 2:os49<n,gcd(4,li)= l 1 = 3/7r2 . n2 -{1 + 
o(l)). We show now how to compute an equiv
alent of N(n). 
Lemma 2.2 The number 2 · N(n) is exactly 
the number of different lines of positive slope 
of the 2-dimensional grid of size n. 
Proof. (Outline) Use the duality which maps 
the line passing through the points (1,x) and 
(2,y) on the point (x,y) . It is no hard to 
show that by duality concurrent lines are trans
formed into points on a line. 0 

Using the above lemma and theorem 2.3 we 
get 

( ) 
1 3 4 

N n "' --- ·n ((2) 32 . 

3 Visibility Problems 

In this section we concentrate on the study of 
an art gallery question. 
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3.1 Camera Placement Problem 

An interesting (and in general still open) art 
gallery problem was posed by Moser [Mos85] 
in 1966: given a set P of points in the plane 
how many guards located at points of P are 
needed to see the unguarded points of P? The 
special case of this problem where the points 
of P are located on the vertices of the integer 

lattice L! has been studied by Abbott [Abb74]. 
In this section we will be concerned with a re

lated but different art gallery question for point 
obstacles: the camera placement problem on 
integer lattices. Namely, where on the infinite 
lattice Ld does one position a set of s cameras 
in order to maximize their visibility? A naive 
search over all possible nd lattice positions of 
L! is impractical since it would require about 

searches in order to check and verify all possible 
configurations for the s cameras. 

Before proceeding any further it will be nec
essary to define more rigorously what we mean 
by optimal configuration of a set of cameras. 
Our analysis will be based on a theorem of 
Rumsey [Rum66] regarding the ratio of the set 
V,.(S) of points of the lattice L! which are vis
ible from all the points of S simultaneously, 
namely 

lim IVn(S)I = IT (l - IS/pi). (a) 
n-ao nd pd 

pE"P 

The above quantity is denoted by dp(S). 
It follows easily from the principle of inclu
sion/exclusion that the limit of the ratio of the 
set Un(S) of points of the lattice L! which are 
visible from at least one point of S is given by 
the formula 

}~"!, IU:C:)I = L (-l) IPl- ld.,,(P) . 
P~S, P°i' 0 

(4) 
We call the above quantity the density of the 
configuration S and denote it by u(S). A con
figuration S consisting of s points is called op
timal if for any other a-point configuration S' 
the density of S exceeds the density of S'. 

Now we can determine what is the optimal 
configuration for a single point . Equation (3) 
shows that the density of the set of lattice 
points visible from a single camera iR always 



1/((2) regardless of the position of the camera. 
For two points it is not difficult to see that by 
combining equations (3), (4) we can conclude 
that the visibility is maximized exactly when 
the cameras are pairwise visible. For s > 2 

equation ( 4) becomes rather unmanageable. To 
proceed any further it will be necessary to make 
a thorough analysis of the relative position and 

distribution of the points of the given configu
ration. 

3.1.1 Admissible Families 

In the sequel we give several basic definitions 
and establish notation that will be essential in 
our subsequent study. Let P = {2, 3, 5 · · ·} be 
the set of prime numbers, p ranges over the set 
of primes and Q over subsets of P. Two points 

A and B are p-visible if p is not a divisor of 
gcd(A- B). Two points A and Bare Q-visible 
if for all p E Q, p is not a divisor of gcd(A -
B). In particular two points A, B which are 
'P-visible are visible in the geometric sense, i.e. 
the line segment joining A and B avoids all the 
lattice points but A, B. 

For S set of lattice points we use the follow
ing notations 

• VQ(S) the set of points which are Q-visible 
from each point of S 

• dQ(S) the density (if it exists!) of the cor
responding set VQ(S). 

Now the above mentioned result of Rumsey 
can be stated as follows. 
Theorem 3.1 ([Rum66]) If S is a finite set 
of points then the set vp(S) has a density given 
by 

dp(S) = II (1 - 1s1:1) .o 
pEP p 

We see then that dp(S) depends only on the 
gcd(A - B), where A and B run over elements 
of the set S. Clearly, theorem 3.1 gives the 
density of the set of points X such that 

X ~ A mod p, Vp E P, VA E S. 

It is a particular case of the following prob
lem. 

Problem 3.1 Given a finite set S of lattice 
points and for every point A of S a square-free 
natural number YA, what is the density of the 
set of pointa X such that 

X = A mod p {:::::::} p I g A ? (5) 
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Theorem 3.2 The ayatem (5) has a aolution 
if and only if the following two conditions are 
satisfied for any prime p, 

• coherence condition: 
PI YA ==> (p I 9B <===? p I gcd(A - B)) 

• ma:cimality condition: 

l{A ES: P JgA}/PI < P11 

Moreover this set of solutions has a density 
given by 

1 II ( IS/pi) 
(lcm{gA : A E S} )" . l - --pd ' 

pEQ 

where Q is the set of primes relatively prime to 
the lcm of the gA 's. 

Proof. (Outline) If the system has a solution 
then the coherence and maximality conditions 
are easily verified. Let n be the set of solutions 
of equation (5) and let G be the set of points 
X satisfying the congruences X = A mod g A, 

where A E S. Clearly we have 

n ~ vQ(S) nG. 

Now use the coherence and maximality condi
tions to show that in fact equality holds 

n = vQ(S) n c. 
Use now the work of Rumsey on the density of 
periodic and visibility sets to obtain the result 
concerning the density of the above mentioned 
set. This proves the desired result. 0 

In our subsequent study we will be mainly 
concerned with the following extension of the 
previous problem concerning the realizability 

of families 9i,i of integers by lattice points Ai. 

Problem 3.2 Solve in Ai, 1 :5 i :5 s the sys-
tern 

Ai =: Ai mod p <===> plgi,i, 

where the Yi,; are given with 1 :5 i, j :5 s, gi,j = 
g;,i and 9i,i = 0. 
Theorem 3.3 The problem 3.2 has a solution 

if and only if the following two conditions are 
satisfied for any prime p, 

• coherence condition: 

P I g;,;, g;,1c ==> P I g;,1c 

• maximality condition: 
1{1, ... ,s}/pl :5p11 , 

where { 1, ... , s} /p is the quotient space of 
{1, ... , s} by the relation i "'j if! p I g;,;. 



Proof. See [KP90]. 0 
Now we have developed the necessary ma

chinery to proceed with our study of the op
timal placement of a set of cameras. In the 
sequel we will study the following problem. 

Problem 3.3 Givens, mazimize 

u(S), 

under the condition ISI = s. 

Let S be a configuration of points of the lat
tice L~ . We know that the set of points which 
are visible from at least one point of S has a 
density given by 

u(S) = L (-1) IPl- ld-p(P). 

PcS, !P l ~ l 

Moreover we know that u(S) depends only on 
the prime factors of gcd(Ai - A j ), for A,, Ai E 
S. This leads us to defining 9i,j as the product 
of the prime factors of the gcd(Ai - A;)'s and 
let g be the family of the 9i,i 's. Moreover we 
define u(g) := u(S) where 

and P / g(p) is the quotient space of P by the 
relation i ,..., j if and only if p I 9i,i. 

The previous considerations have made it 
clear how, given a family g = (gi,ih $i<i $a 
of square free integers which satisfies the co
herence and maximality conditions 3.3, 
to construct a set S of s points such that 

u(S) = u(g). 

Let us call admissible system (of size s) such 
a family of 9i,j 's. In the rest of this section we 
will concentrate on the solution of the following 
problem. 
Problem 3.4 

M azimise u(g) 

over the set of admissible systems g of a given 
size s . 

3.1.2 Optimal Placement of Cameras 

In the sequel we will use of the following nota

tion: 

• u9 ( Q, S1) is the density of the set of points 
which are Q-visible from at least one point 
of 8 1 , for the system g. 
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• u9 ( Q, T1) is the density of the set of points 
which are not Q-visible from each point of 
T1 , for the system g . 

• 
u 9 ( Q, S1and/orS2 · · · and/orT1and/orT2 · · ·) 
is the density of the set of points which 

are Q-visible from at leastone point of S1 

and/or 8 2 · · · and/or not Q-visible from 
each point of T1 and/or T2 ·· ·,for the sys
tem g. 

where Si and T, are subsets of {l, ... ,s}. In 
particular we have u(g) = u9 (P,{1, . .. ,s}) . 
Our first lemma also provides an algorithm for 
relocating the given set of cameras in order to 
improve their visibility. 

Lemma 3.1 If g and h are two admissible sys
tems of size s then we have 

('v'l ~ i,j ~ s,gi,i I h1,j ) ==> u(g ) ~ u(h), 

with equality if and only ifVi,j 9i ,i = hi,i· 

Proof. (Outline) Put S = {l, ... ,s} . In the 
sequel we use t he notation 

dQ(P,g) = II (1 - IP/gd(p) I) . 
p E Q p 

The main idea of the proof is to construct a 
sequence 

h(O) := h, ... 'h(i ) , . .. h ( k ) = g 

of admissible families each of sizes. The family 
h''+I) is obtained from the family h(i) by divid

ing an equivalence class in h''> by an appropri
ate prime number (as indicated in the sequel). 
Since the resulting sequence of admissible fam
ilies satisfies u(h(i) ) < u(h(i+l )) the proof of 

the theorem will be complete. 
In the sequel we indicate how to resolve the 

induction step. This amounts to treating the 
special case where for some prime Po E P and 
some index io we have that 9i,j = hi,j V i,j, 
except that 

h10 ,j \.I • S' { . I h } 
9io,i = p vJ E := J: Po io.i · 

Let f! be the domain { P ~ S : io E P , S' n P # 
0} and let S" = S \ ( S' U { io}). Straightforward 
arguments on t he number of equivalence classes 
of the sets concerned show that 

• VP ~ s, Vp #Po . IP/g(p) I = IP/h(p) I, 



· ~ - - = - - .-. -

• VP En, IP/g(po)I = IP/h(po)I + 1, 

• VP E IT, IP/g(Po)I = IP/h(Po)I. 

Using the above properties we obtain 

u(g) - u(h) = 

:~::)-l) I Pl-l{dp(g,P)- dp(h,P)} = 
p 

L(-l)IPJ-idp\Po (g, P)·{dp0 (g,P)-dp0 (h, P)} = 
n 

1 
~)-l) IPl-ldp\po(g,P). d = 
n Po 

1 -
d · u 9 (P \Po, io and S' and S") > 0. 
Po 

The difference u( h) - u(g) is clearly positive 
because up to a constant positive factor it ap
pears as the density of the set of points which 
are P \Po-visible from io and from at least one 
point of S' and not P \po-visible from each 
point of S". This completes the proof of the 
induction step, and hence also the proof of the 
lemma. 0 

As a consequence of the lemma we obtain 
the following rather surprising fact: if S is an 
optimal configuration then the number IS/pi 
of equivalence classes of S modulo p depends 
only on ISI and the prime p and is otherwise 
independent of the chosen configuration. More 
formally we have the following theorem. 

Theorem 3.4 If S is an optimal configuration 
then 

Vp E P, IS/pi= min(ISl,pd). (6) 

Proof. (Outline) First we prove the neces
sity of (6). IS/pi ~ pd is obvious since there 
can exist at most pd different d-tuples modulo 
p. This implies that IS/pi $ min(ISl,pd). Let 
s = ISI. Ifs $pd then identity (6) follows eas
ily from the previous lemma. So let us assume 
that s > pd. We need to show that IS/pi = pd. 
Assume on the contrary that IS/pi <pd. As
sume that the d-tuple {ti, ... , td) is a repre
sentative of a missing equivalence class and let 
A, B be two different lattice points of S such 
that PI gcd(A- B). Use the Chinese remainder 
theorem to replace A with a new point A' sat
isfying A' = (ti, ... , td) mod p and for primes 
q # p, A'= Amodq. Let S' = (S-{A}U{A'}. 
Using the previous lemma it is easy to show 
that u(S') > u(S), contradicting the optimal
ity of S. D 
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It is now possible to prove the optimality 
condition for $ 2d cameras . 

Theorem 3.5 A configuration S of$ 2d lat
tice pointa is optimal if and only if it consists 
of pairwise visible points. 

Proof. (Outline) Use theorem 3.4. D 
For s ~ 3d cameras we have the following 

theorem. 

Theorem 3.6 A configuration S of ~ 3d 
points is optimal if and only if the following 
two conditions are satisfied 

Vp E P, IS/pi= min(ISl,pd) 

and 

Vx E S/2, lxl = ll~lj or lxl = f l~ll 
Proof. (Outline) Let ISI = s. First we prove 
that the conditions are necessary. We have seen 
in theorem 3.4 that the first condition is nec
essary. So without loss of generality we may 
assume that the first condition is realized. In 
that case it is easily seen that the second con
dition is equivalent to 

Vx, y E S/2 llxl - IYll ~ 1. 

Let di = ci U { i} and c2 be two equivalent 
classes of S /2 where i is a .distinguished el
ement of di. Assume on the contrary that 
ldil > lc2I+1. A contradiction will be obtained 
if we can show that the configuration obtained 
by removing i from di and adding it to c2 is 
a better one. Let S' be the configuration ob
tained from S by deleting i drom di and adding 
it to c2. That this can be done follows easily 
from the Chinese remainder theorem. Let <P be 
an injection from c2 to CJ and let c~ = CJ\ <P( c2). 
Then we obtain easily that for all P ~ S such 
that i is not an element of P, 

• if PncJ I 0, Pnc2 = 0 then IPU{i}/Pls 1 = 
1 + IPU {i}/Pls, 

• if Pnc1 # 0, Pnc2 # 0 then IPU{ i} /pls• = 
IP u {i}/Pls, 

• if Pnc1 = 0,Pnc2 = 0 then IPU{i}/Pls 1 = 
IP U {i}/Pls, . 

• if Pnc1 = 0,Pnc2 # 0 then IPU{i}/Pls1 = 
- 1 +IP u {i}/pls, 



where IPU{i}/Pls and IPU{i}/Pls• denote the 

number of equivalence classes of PU { i} mod

ulo p, in the configurations S, S', respectively. 

Using these properties we obtain easily that 

P CS 
pn;;_=e 
P n <2;oll 

u(S') - u(S) = 

. 1 L (-1)IPldp\2(P u {i}). 2d = 
P CS 

PnC";::t 
P n c 1 :;it 

L (-1) IPldp\2(P u {i}) = 
P CS 

Pn•2 .Pi'i•C•2 )= t 
P nq \ • (<.J ;oll 

2

1
d ·u9 cs>('P\2, i and c~ and S \ c2 U </>(c2)) > 0, 

which proves the necessity of the second condi

tion. 
Next we prove the sufficiency of the two con

ditions. For this it suffices to show that any 

two configurations S, S' of the same size both 

satisfying the two conditions have the same vis

ibility. But it is clear that S/2, S' /2 have the 

same number of equivalence classes of each type 

LISl/2d J' ns1/2d1 I respectively. This implies 
easily that there is a unique up to isomorphism 

configuration. And thus u{S) is independent of 

the chosen configuration S. 0 

Optimal configurations for s $ 9 points are 

depicted in Configuration I of figure 1. It is 

easy to show using the previous results that for 

each s $ 9 the optimal s-point configuration 

consists of the points 1, ... , s. Of course other 

optimal configurations are possible. 

3.1.3 Extensions 

The main difficulty in studying the optimality 

of a given configuration S of s lattice points lies 

in part in the unwieldiness of the alternating 

sum formula for the density u(S) of the lattice 

points visible from a camera in S. The main 

concept that proved helpful in our study of the 

camera placement problem was that of admis

sible systems. Intuitively, the coherence and 

maximality conditions of an admissible system 

for a configuration S capture the essential in

formation concerning visibility questions of a 

point A from a point B, namely the prime 

divisors of gcd(A - B), for A, B E S . This 
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makes it possible to manipulate configurations 

by changing the locations of their points in 

order to eventually determine a configuration 

with better visibility. We then showed that in 

optimal configurations of size s, the cameras 

must be clustered in equivalence classes (for p 

prime) of specific size which depends only on 

the size s and the prime p. This enabled us 

to give the optimality characterizations of the 

previous section. 
Still the key idea in overcoming the inher

ent complexity of optimizing u{S) lies in the 

inductive formula for computing u{S) which is 
proved by allowing the primes to 'play a game 

of chance' (Kac59, chapter 4). We have the fol

lowing theorem. 

Theorem 3. 7 For any configuration S and 

any prime p the density u(S) ia given by the 

following formula 

L u('P\:;S\c) + (i -1~1) ·u('P\p,S) 

cES/p 

Proof. (Outline) Let A1, · · · , A11 ~ a set of 

representatives of the equivalence classes of 

L/p. The set U(S) of points which are visi

ble from at least one point of S is the disjoint 

union of the pd sets Ui of points which are not 

p-visible from Ai and 'P\p-visible from at least 

one point of the set-theoretic difference S; be

tween S and the set of points of S which are 

not p-visible from A;. Using our theorem 3.2 

we get that the density of Ui is f.r ·u('P\p,S;). 

Using the additivity of the density {for finite 
families) we obtain 

u(S) = ~ u('P ~· S;) 

• 
which can be rewritten 

""" u('P \ p, S \ c) + (i _ IS/pi) . u('P\p, S) 
L...J pd pd 

cES / p 

if we observe that S; = S \ c as long as A; E c 

and S; = S otherwise. 0 

It is interesting to note that using the above 

formula we can obtain an elegant proof of 

theorem 3.4. Indeed suppose that IS/pi < 
min(s,pd) then there exists a c E S/p with at 

least two elements. If S' is a configuration ob

tained by dividing c in two parts c1 and c2 then 

we have (we use the notation u'(.) for u('P\p, .)) 

pd(u(S') - u(S)) = 



, .,.._.- ,,~ : =~ - : : - -

1 2 1 2 1 2 
. 3 4 5 ·3 . 5 4 ·3 ·5 
·6780 . 6 7 8 ·678 

·9 ·9 . 4 ·9 
·0 ·0 

Configuration I Configuration II Configuration III 

Figure 1: Three ten-point configurations 

u'(S \ c1) + u'(S \ c2) - u'(S \ c) - u'(S) = 

u'(S \ c2 and c2) - u'(S \ c2 \ c1 and c2) > 0 

which is clearly positive. 
The above theorem admits the following gen

eralisation 
Theorem 3.8 For any configuration S and 
any square free integer m = PI · · ·Pk the den
sity u(S) is given by the following formula 

Proof. (Outline) Similar to the proof of the 
previous theorem.D 

The previous theorem combined with the
orem 3.4 has the following nice effect on the 
problem of optimizing u(S). Put ISI = s and 
let m be the product of the primes p such that 
pd < sand suppose that IS/pi = min{s,pd). In 
that case we observe that 

u'(l) := u(P \ {p1, · · · 1 Pk},S \ LJci) 
i 

depends only of the cardinal I of the set S \ 
ui Ci. Precisely we have 

Let I = {i1, · · ·, ik) be a multi-index and let 
l1 = IS\ U; c;; I where Ci; E S/p; {the number 
of multi-indices is md). Then we have 

md · u(S) = L u'(l1) 
1 

The difficulty in optimizing u(S) is now trans
fered to the following problems 

• What are the possible families of 11? 
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• What are the properties of the function 
l --+ u'(l)? 

It is not hard to show that 

• 2:1 l1 = s · IJi(pf - 1), 

• the function u'(l + 1) - u'(l) is decreasing 
as I increases. 

Using the above properties we can obtain 
straightforward proofs of the optimality for 
s $ 3d. Moreover we can show that if s ~ 5d 
then for every d E S/3 and c E S/2 we have 
ldl ~ 2 ==> Id\ cl ~ 1 {[KP90]). 

3.2 Conjectures and Heuristics 

We conclude this section by a detailed examina
tion of the optimal configuration for 10 cameras 
in the plane and a conjecture on the general 
case. It seems reasonable to conjecture that 
our theorem 3.6 is true for every s and every p 
that is 

'Vx e S/p, lxl = l~IJ or lxl = r~ll · 

Under this hypothesis the only possible "op
timal" ten point configurations are depicted in 
figure 1. The corresponding equivalence classes 
are given by the formulas below. 

• Configuration I 
S/2: {1, 7 ,0},{2,6,8},{3,5},{ 4,9} 
S/3: {6,0},1,2,3,4,5,7,8,9 

• Configuration II 
S/2: {1,7,0},{2,6,8},{3,5},{4,9} 
S/3: {3,4},1,2,5,6,7,8,9,0 

• Configuration III 
S/2: {1,7,0},{2,6,8},{3,5},{ 4,9} 
S/3: {1,4},2,3,5,6,7,8,9,0 

Straightforward computation of the l1's gives 



• 36 · u(I) = 16 · u1(6) + 16 · u'(7) + 4 · u'(8) 

• 36·u(IJ) = 2·u'(5)+10·u'(6)+22·u'(7)+ 

2 · u'(B) 

• 36 · u(III) = 1 · u 1(5)+13 · u'(6) + 19 · 

u'(7) + 3 · u'(8) 

Using the fact that u'(land/+1)-u'(land/) 

decreases as I increases we can show that 

u(III) < u(II) < u(J). 

The complete solution of the problem of 
maximizing u(S) seems to appeal to a better 
knowledge of the function u'(.) as well as of 

the possible families lr. Combinatorial proper

ties of the lr will be investigated in [KP90]. A 
possible way to improve our knowledge of the 

function u' (.) is to examine the closed form 

u'(I) = ~ 1-1 . TIPl ... (1 - -jz) dz 
2i1r r -z . TI'· (1 - ~) 

J = l J 

which is obtained using the Residue theorem 
(I' is a counterclockwise cycle that encloses the 

points (0, 1), · · · (0, l), but not the point (0, 0)) 

[Rud74], [FS83] . 
Let us now state a conjecture about the op

timal configuration in the general case. The 
"convexity" properties of the function u'(.) 
make us conjecture that to achieve an optimal 

configuration we should choose a family of lr 
with a minimum standart deviation. Suppose 

we have indexed the equivalent classes of L/p 
by the integers between 1 and pd. So we can 

attach to each point A of L a sequence of inte

gers which represent the various classes of L/p 
at which A belongs as the prime number p in

creases: p = 2,3,5,7, .... It is clear that u(S) 
is completely determined by theses sequences. 
Let i be the operator of pointwise incrementa

tion, i.e. 

Let 1 be the sequence (1, 1, 1, . .. ). For example 
we have i(l) = (2, 2, . .. ). We conjecture that 
an optimal configuration of s points is obtained 

for the following sequences: 

1, i(l), i 2 (1) , ... , i• - 1 (1) , 

where the coordinates of each sequence are 
computed modulo 2d, 3d, . . .. This repartition 
of the s cameras seems to be the best balanced 
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one between the various classes of L/p asp in

creases and appears to achieve the minimum of 

the standart deviation of the family of lr. In 

addition, the above repartition concides with 

the optimal configuration I as depicted in fig

ure 1, for any number of s :5 10 cameras. 
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