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Abstract. This paper describes a new algorithm for constructing the set of free bitangents 
of a collection of n disjoint convex obstacles of constant complexity. The algorithm runs 
in time O(nlogn + k), where k is the output size, and uses O(n) space. While earlier 
algorithms achieve the same optimal running time, this is the first optimal algorithm that 
uses only linear space. The visibility graph or the visibility complex can be computed in 
the same time and space. The only complicated data structure used by the algorithm is a 
splittable queue, which can be implemented easily using red-black trees. The algorithm 
is conceptually very simple, and should therefore be easy to implement and quite fast in 
practice. The algorithm relies on greedy pseudotriangulations, which are subgraphs of the 
visibility graph with many nice combinatorial properties. These properties, and thus the 
correctness of the algorithm, are partially derived from properties of a certain partial order 
on the faces of the visibility complex. 

1. Introduction 

Visibility graphs (for polygonal obstacles) were introduced by Lozano-P6rez and 
Wesley [18] for planning collision-free paths among polyhedral obstacles; in the 
plane a shortest euclidean path between two points runs via edges of  the visibility graph 
of  the collection of obstacles, augmented with the source and target points. Since 
then numerous papers have been devoted to the problem of their efficient construction 

* A preliminary version of this work appeared in the Proceedings of  the 1 lth Annual ACM Symposium on 
Computational Geometry, Vancouver, June 1995, pages 248-257. 
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Table 1. Optimal time visibility graph algorithms. 

Space Time Source Obstacles Data structures 

n n 2 Edelsbrunner-Guibas [8] n points Simple 
k k + n log n Hershberger [12] Simple polygon Simple 

(k + n) with n vertices (Finger search trees + 
O (n)-triangulation algorithm) 

k k + n logn Ghosh-Mount [10] n line segments Split-find data structure 
of Gabow and Tarjan [9] 

k k + n log n Pocchiola-Vegter [24] n convex sets Sprit-find 
n k + n log n This paper n convex sets Sprittable queues 

[4], [8], [10]-[12], [14], [23]-[25], [27], [29], [30] as well as their characterization (see 
[1], [2], [6], [22], [26], and the references cited therein). 

This paper describes a new algorithm for constructing the (tangent) visibility graph 
of a collection O of n disjoint convex obstacles of  constant complexity. Its running 
time is O (n log n + k), where k is the output size, and its working space is linear. The 
algorithm is extendible to the case where the objects are allowed to touch each other. 
Therefore, our method can be adapted to compute the (classical) visibility graph of a set 
of  disjoint polygons in the plane (e.g., by triangulating the polygons and applying the 
extended version of our algorithm to the collection of edges of  the triangulation). While 
earlier algorithms [10], [12], [14], [24] achieve the same optimal running time, under 
various assumptions on the nature of the obstacles (see Table 1), this is the first optimal 
algorithm that uses only linear space. The only complicated data structure used by the 
algorithm is a splittable queue, which can be implemented easily using red-black trees. 
The algorithm is conceptually very simple, and should therefore be easy to implement 
and quite fast in practice. We are convinced that the algorithm also works for obstacles 
of  nonconstant complexity; see Section 3.4.5. 

Recall that a bitangent is a closed line segment whose supporting line is tangent to two 
obstacles at its endpoints; it is called free if it lies in free space (i.e., the complement of  
the union of  the relative interiors of  the obstacles). An exterior (resp. interior) bitangent 
is a bitangent lying on the boundary of (resp. in the interior of) the convex hull of  the 
collection of  obstacles. We denote by B the set of  free bitangents of  the collection of  
obstacles. The endpoints of  these bitangents subdivide the boundaries of  the obstacles 
into a sequence of arcs; these arcs and the free bitangents are the edges of  the visibility 
graph of the collection of obstacles, as illustrated in Fig. 1. Our main result is the 
following. 

T h e o r e m  1. Let B be the set of free bitangents of a collection 0 of n pairwise disjoint 
obstacles, and let k be the cardinality of B. There is an algorithm that computes the 
set B in O(k + n logn)  time and O(n) working space--under the assumption that 
the bitangents between two obstacles are computable in constant time. Furthermore, if 
desired, the algorithm can compute the visibility graph (or the visibility complex) of the 
collection of obstacles in the same space and time bounds. 
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Fig. 1. The visibility graph of a collection of four obstacles. 
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Our approach is to turn B into a poset (partially ordered set) (B, _) and to compute a 
linear extension of (B, _),  i.e., to embed ___ into a linear (total) order. In other words, we 
solve the topological sorting problem [15], [16] for (B, _).  

To define this partial order, we first introduce some terminology. The set of unit 
vectors in the plane is the 1-sphere S 1 . Let exp: 7~ --~ S i be the universal covering map 
of the 1-sphere, defined by exp(u) = (cos u, sin u). Furthermore, let B ~ be the oriented 
version (double cover) of B, obtained by associating with each b E B the two directed 
versions of b. The subset X0 of B ~ • T~ is defined by 

X0 = {(v, u) e B ~ x R I exp(u) is the unit vector along v}. 

A point b = (v, u) in X0 is called a bitangent in X0; the unoriented version of the 
bitangent v ~ B ~ is denoted by bit(b); u ~ ~ is called the slope of b, denoted by 
Slope(b). We identify a bitangent in B with the corresponding bitangent in X0 with slope 
in [0, Jr). Two bitangents b and b' in Xo are crossing, disjoint, etc., if the corresponding 
bitangents bit(b) and bit(b') in B are crossing, disjoint, etc., as subsets of the plane. 

The (partial) order ~ on X0 is defined as follows: b ~ b' if there is a counterclockwise 
oriented curve joining (some point of) bit(b) to bit(b'), that runs along the edges (arcs 
and bitangents) of the visibility graph of the obstacles, and that sweeps an angle of 
Slope(b') - Slope(b), as illustrated in Fig. 2. This order has several nice properties, on 
which our algorithm is based. At this point we just mention that two crossing bitangents 
are comparable with respect to ~ (see Lemma 7). Since ___ is compatible with the slope 
order on X0, an obvious extension o f _  is the linear order obtained by sorting the elements 
of X0 according to increasing slope. However, this is computationally too expensive. To 
obtain the proper setting for dealing with the problem of extending ___ to a linear order on 
X0, we use the notion of filter. 1 A special type of filter of X0 is the subset of bitangents 

1 A filter 1 of a poset ( P ,  •  is a subset of P such that if x 6 1 and x _< y, then y E 1. The set of filters, 
ordered by reverse inclusion, is a poset. Our main interest in the notion of filter is that, given two filters 1 and 
J with J c I and 1 \ J finite, the sequence x l ,  x2 . . . . .  xk of elements of 1 \ J is a linear extension of ( l  \ J ,  5 )  

if and only if the sequence of sets 11, 12 . . . . .  lk,  defined by li  \ J = {xi ,  Xi+l . . . . .  xk }, is an unrefinable chain 
of filters in the interval [1, J]. We borrow poset terminology from Stanley [28, Chapter 3] and McMullen [19]. 
To keep the paper self-contained, we review this terminology in Appendix A. 
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Fig. 2. A counterclockwise oriented curve with initial point x, terminal point y, and two cusp points. The two 
cusp points subdivide the curve into three regular smooth counterclockwise subcurves, i.e., each of these three 
subcurves can be described by a function f :  [0, 1] ~ R2 with ft(t) = Ift(t)l exp(0(t)) # 0, where O(t) is 
a continuous nondecreasing function. By definition the angle swept by the regular subcurve f is 0(1) - 0(0), 
and the angle swept by the curve is the sum of the angles swept by its regular subcurves. In the example the 
angle swept between the two rays starting at x and y is slightly over 2yr. 

I (u), defined for u 6 R ,  that consists of  all bitangents in X0 whose slope is greater than 
u. For each filter I of  (X0, ___) we define a maximal subset G(I) = {bl . . . . .  bin} of I as 
follows: (1) bl is minimal in I ,  and (2) for 1 < i < m, the bitangent bi+l is minimal 
in the set of  bitangents in 1, disjoint from bl, b2 . . . . .  bi. Since crossing bitangents 
are comparable it follows that G(1) is well defined (independent of  the choice of  the 
bi), and that min-<_ I c_ G(I). We prove that for each filter I the set G(I) contains 
3n - 3 bitangents, that subdivide free space into regions called pseudotriangles. This 
subdivision, also denoted by G(I), is called a greedy pseudotriangulation. The regions 
owe their name to their special shape, that is explained in more detail in Section 2. 
We refer to Fig. 3 for an example of greedy pseudotriangulations associated with filters 
of  X0. 

Our algorithm maintains the greedy pseudotfiangulation G(I) as I ranges over a 
maximal chain of  filters of  the interval [I(0),  I(zr)], namely the set of  filters I with 
I(0)  D I D I(rr).  The basic operation that updates the pseudotriangulafion is aflip of 
a free bitangent, minimal in the filter. The key result is the following. 

Theorem 2. Let I be a filter of ( Xo, "<) and let b ~ min<__ 1. Then G ( I \ { b } ) is obtained 
from G(I) by flipping b, i.e., by replacing b with the only minimal bitangent in I\{b} 
disjoint from the other bitangents in G(I) (see Fig. 3). 

If  the obstacles are points, our method--translated into dual space is an alternative 
for the topological sweep algorithm for arrangements of  lines, of Edelsbrunner and 
Guibas [8]. Our pseudotriangulations replace their (upper and lower) horizon trees. 

The paper is organized as follows. In Section 2 we recall the definition of  the visibility 
complex Y of  the collection of  obstacles, a cell complex on the space S 2 x S 1 carrying 
the view from points (in S2, the plane 7~ 2 together with the point at infinity) along a 
direction (in S1). 

The set X0, introduced in this section, is the set of  vertices (0-faces) of  the universal 
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(a) (b) 

Fig. 3. (a) The greedy pseudotriangulation associated with the filter 1 (0) of bitangents with slope >_ 0. The 
dashed bitangents bl and b2 are both minimal in the filter 1 (0). (b) The greedy pseudotriangulation associated 
with the filter l(0)\{bl, b2} which is obtained from G(I(O)) by flipping bl and b2. 

cover X of Y, which is a cell complex on the universal c o v e r  S 2 X ~'~ of ~.~2 X S 1 , 

induced by the universal covering map exp: R ~ S 1 on the second component. We 
introduce the partial order ___ on the cover X and we prove that this order satisfies a 
"minimum-element" property: the set of  bitangents greater than a given bitangent and 
crossing it has a minimum element. Then we prove Theorem 2 by interpreting the greedy 
pseudotriangulations as maximal antichains of 5 on X\Xo. In Section 3 we show how 
the flip operation can be efficiently implemented, using splittable queues. 

2. The Visibility Complex 

2.1. Terminology: Pseudotriangles and Pseudotriangulations 

Let 0 = {01, 02 . . . . .  On] be a collection o f n  pairwise disjoint closed convex sets 0 i 

(obstacles for short). We assume that the obstacles are (1) strictly convex (i.e., the open 
line segment joining two points of  an obstacle lies in its interior), (2) smooth (i.e., there 
is a well-defined tangent line through each boundary point), and (3) in general position 
(i.e., no three obstacles share a common tangent line). In particular two bitangents in 
B are disjoint or intersect transversally (i.e., not at their endpoints). These assumptions 
are only for ease of  exposition. The general case can be treated by standard perturbation 
techniques; for example, to cover the case where obstacles are allowed to be points and 
disjoint line segments the perturbation scheme may, e.g., consist of  taking the Minkowski 
sum with an infinitesimally small circle. A pseudotriangulation of a set of  obstacles is 
the subdivision of the plane induced by a maximal (with respect to inclusion) family of  
pairwise noncrossing free bitangents. It is clear that a pseudotriangulation always exists 
and that the bitangents of  the boundary of the convex hull of  the obstacles are edges of  
any pseudotriangulation. Two pseudotriangulations of  a collection of four obstacles are 
depicted in Fig. 3. The subdivision owes its name to the special shape of its regions. A 
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Fig. 4. 
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(a) A pseudotriangle. (b) Two disjoint pseudotriangles share exactly one common tangent line. 

pseudotriangle is a simply connected subset T of the plane, such that (i) the boundary 
O T consists of three convex curves, that share a tangent at their common endpoint, 
and (ii) T is contained in the triangle formed by the three endpoints of these convex 
chains. See Fig. 4(a). These three endpoints are called the cusps of T. At each boundary 
point of a pseudotriangle there is a well-defined tangent line, and there is a unique 
tangent line to the boundary of a pseudotriangle with a given unoriented direction (more 
formally the support function ~or: S 1 ~ ~ of T is well defined, continuous, and satisfies 
~r(u) = -~or ( -u )  ). 

Lemma 3. The bounded free regions of any pseudotriangulation are pseudotriangles. 
Furthermore, the number of pseudotriangles (of a pseudotriangulation of  a collection 
of n obstacles) is 2n - 2, and the number of bitangents is 3n - 3. 

Proof. Let R be a family of noncrossing free bitangents containing the bitangents of 
the boundary of the convex hull of the collection of obstacles. Assume that some free 
bounded face of the subdivision is not a pseudotriangle; from this we derive that R is not 
maximal. This means that this face is not simply connected or that its exterior boundary 
contains at least four cusp points. In both cases we add to R a bitangent as follows. Take 
the minimal length closed curve, homotopy equivalent to the exterior boundary of the 
face, and going through all cusp points of the exterior boundary but one. This closed 
curve contains a free bitangent not in R; hence R is not maximal. 

An extremal point is a point on the boundary of an obstacle at which the tangent line 
to that obstacle is horizontal. Each pseudotriangle contains exactly one extremal point in 
its boundary (namely the touch point of the horizontal tangent line to the pseudotriangle). 
Since there are 2n - 2 extremal points in the interior of the convex hull of the obstacles 
there are exactly 2n - 2 pseudotriangles. The last result is then an easy application of 
the Euler relation for planar graphs. To see this, observe that the set of vertices consists 
of all endpoints of bitangents. In particular every vertex has degree 3. Furthermore, the 
number of edges, that lie on the boundary of some object, is equal to the number of 
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Fig. 5. A pseudoquadrangle and its diagonals. 

vertices. Finally, the total number of bounded regions is equal to the sum of the number 
of pseudotriangles and the number (n) of obstacles. [] 

Lemma 4. Let T and T' be two disjoint pseudotriangles. Then T and T' have exactly 
one common tangent line. (See Fig. 4(b).) 

Proof. For the existence part we apply the Intermediate Value Theorem to the con- 
tinuous function defined as the difference between the support functions of T and T'. 
For the uniqueness we observe that tangent lines to a pseudotriangle cross inside the 
pseudotriangle. [] 

We use this last lemma only in the case where T and T'  are adjacent pseudotriangles (in 
a pseudotriangulation). In that case the union of T and T' is called a pseudoquadrangle, 
and T and T'  share two common bitangents called the diagonals of the pseudoquadrangle 
(see Fig. 5). 

2.2. Definition of the Visibility Complex Revisited 

The visibility complex was defined in [24] as a partition of the set of free rays. Here 
we define the visibility complex as a partition of the whole set of rays (free or not free) 
augmented with rays at infinity. This slight modification simplifies the description of the 
combinatorial structure of the visibility complex and, in particular, of its cross sections. 

We identify the plane ~2 with a 2-sphere S 2 minus a point, called the point at infinity. 
Given a real number u e R let Cu be an infinite strip, centered around a line through 
the origin with slope u + zr/2, large enough to contain all the obstacles. We denote by 
Lu and Ru the two connected components of ~2\Cu, where L~ comes before Ru along 
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Lu 

Ct~ 

0o% R. 
O ~ 

exp(~) 

Fig. 6. The infinite strip Cu. 

lines with direction exp(u) (see Fig. 6). The u-free space Fu is the closure of Cu\ I,.J O. 
A ray (p, u) is an element o f S  2 x ~ ,  consisting of a point p and a real number u. The 
point p is called the origin of the ray, and the real number u is called its slope. We denote 
by Y+i (resp. Y-i) the set of rays (p, u) emanating from and tangent to obstacle Oi (i.e., 
p ~ OOi and the tangent vector at p to Oi is exp(u) e $1), that contain Oi in their 
left (resp. right) half-plane; obviously Y+i and Y-i are homeomorphic to 7~. Similarly, 
we denote by Y+o (resp. Y-o) the set of rays (p, u) emanating from and tangent to the 
convex hull of the set of obstacles. 

Let C i = 0 i X "~, and let C_ = [.JueTZ Lu • {u} and C+ = ~.JucTZ Ru x {u}. For a 
point p in R2 and a real number u e ~ we are interested in the object (possibly Lu or 
Ru) that we can see from p in the direction exp(u) e S 1 . This object is called the view 
from p along u, or the forward view from the ray (p, u) (the backward view from the ray 
(p, u) is the forward view of the opposite ray, (p, u + Jr)). By definition the backward 
(resp. forward) view from the point at infinity along u is Lu (resp. Ru). The view from 
a point p inside an object Oi is this object Oi, irrespective of the direction. 

We define a cell complex X, whose underlying space IXI is a quotient space of the 
space of rays S 2 x ~ .  More precisely, for p, q e S 2 and u e 7~, with p ~ q, we declare 
(p, u) equivalent to (q, u) iff (1) the slope of the directed line from p to q is equal to 
u, up to an integer multiple of Jr, and (2) the line segment [p, q] lies in u-free space 
Fu. In this situation we write (p, u) ~ (q, u). The space IXI is the quotient space of 
S 2 x ~ under the reflexive, transitive closure of ~.  By a slight abuse of terminology, an 
equivalence class is called a ray in IXl. If we fix u e R the set of rays in IXl with slope 
u is a two-dimensional set, homeomorphic to S 2. We refer to this set as the cross section 
of IXI at u. 

If p is a point in u-free space, the equivalence class of (p, u) consists of all points 
of the form (q, u), where the point q ranges over the largest line segment with slope u 
in Fu, that contains p. One may think of the cross section of IXI at u as obtained from 
S 2 by contracting 2 the latter line segment, for all points p in free space. The reader may 
find it helpful to refer to the top half of Fig. 11. The rightmost part of that figure contains 
a schematic picture of the cross section of I X I at u = 0 (provided we forget about the 
direction of the labeled edges). The labeled edges can be seen to represent equivalence 
classes under ~ ,  defined for the set of obstacles in the leftmost part of the figure (the 

2 We refer to the video segment [7] for an illustration of this contraction process. 
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sets L0 and R0 are not depicted here). The subset F0 is subdivided into a number of 
strip-shaped regions. Each point on a labeled edge of the cross section corresponds to a 
maximal free horizontal line segment in the strip-shaped region having the same label. 
Also note that points inside an object constitute an equivalence class by themselves, 
giving rise to the two-dimensional regions in the cross section. It is not hard to see that 
the cross section is homeomorphic to S 2. In Fig. 11 the edge numbered 16 continues 
directly into the edge numbered 1 via the point at infinity. 

The slope of an equivalence class r, denoted by Slope(r), is the common slope of its 
rays, and we denote by seg(r) the set of origins of the rays in r. Observe that seg(r) is a 
maximal (with respect to the inclusion relation) free line segment, unless r = {(p, u)} 
with p in the interior of s o m e  0 i (or Lu or Ru). A ray r in IX[ is said to be tangent to 
obstacle Oi if the line segment seg(r) is tangent to Oi. We stress that the rays (p, u +kzr), 
k e Z,  are distinct points in I Xl. 

Observe that the canonical mapping from S 2 x R onto IX 1, restricted to the interiors 
Inte(Ci) of Ci, with i ~ {1 . . . . .  n, +,  -} ,  is one-to-one. The n + 2 canonical images of 
the sets Inte(Ci) and the 2n canonical images of the curves Y~-i in IXl induce a three- 
dimensional cell (or face) decomposition of I x I, denoted X. The 3-faces correspond to 
collections of rays with origins in the interior of the obstacles (including Lu and Ru), 
i.e., the Inte(Ci), with i e {1 . . . . .  n, + ,  -} .  The 2-faces correspond to collections of 
rays with the same forward and backward views. The 1-faces correspond to collections 
of rays with the same forward and backward views and tangent to the same obstacle. 
The 0-faces correspond to collections of rays which are tangent to two obstacles. A face 
x is said to be bounded if Slope(x) is a bounded subset of ~ ,  otherwise the face is said 
to be unbounded. The only unbounded faces are the 3-faces, and the 2-face that contains 
the rays whose origin is the point at infinity on S 2. We denote the sets of 0-, 1-, 2-, and 
3-faces of X by X0, X1, X2, and X3, respectively, and the set of bounded 2-faces by X~. 

Let Jr be the mapping which associates the ray (p, u + zr) with the ray (p, u). Clearly, 
the (induced) mapping rc: I Xl --> I Xl is an automorphism of the complex X. The quotient 
complex Y := X/rr 2 (whose underlying space is now S 2 x S 1) is the visibility complex of 
the collection of obstacles. (In [24] the visibility complex was defined as the 2-skeleton 
of X/rr 2.) 

Let P(X)  be the poset of faces of X, augmented with 0 and IX[, ordered by the 
inclusion relation of theft closures. Similarly, we define P(Y) to be the poset of faces 
of Y. The local combinatorial structure of P(X) or P(Y) is described in the following 
theorem. (See Fig. 7 and also [24]. We refer to Appendix A for the terminology on 
abstract polytopes.) 

Theorem 5. P ( X) ( P (Y) ) is an abstract polytope of rank 4. Furthermore, the vertex- 
figure of a vertex is the face poset of a three-dimensional simplex. 

Note that there is a canonical mapping arc from the set Xl of edges of X onto the 
set of arcs on the boundaries of the obstacles (these arcs correspond to edges of the 
visibility graph of O, see Section 1). More precisely, for x 6 X1, the arc arc(x) consists 
of the origins of the rays in x emanating from the object to which they are tangent. The 
canonical mapping from the set X0 of vertices of X onto the set B of free bitangents of 
O is denoted by bit; see Fig. 7. In particular, the preimage under the mapping bit of the 
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Fig. 7. (a) Two obstacles defining a vertex b of the visibility complex with slope u. (b) (Local) cross sections 
at slopes u - e, u, and u + e. (c) Neighborhood of a vertex of the visibility complex. (d) The Hasse diagram 
of the vertex-figure of a vertex of P(X) 

bitangent [p, q] with slope u �9 [0, Jr) is the set of  rays (p, u + kzr), k �9 Z.  An element 
of  X0 is called a bitangent in Xo. 

Apseudotriangulation in X is a maximal (with respect to the inclusion relation) family 
of  pairwise disjoint bitangents in X0. Clearly, if G is a pseudotriangulation in X, then (1) 
bit(G) is a pseudotriangulation of  the collection of  obstacles, and (2) Card G = 3n - 3. 

Let x be a 1-face (namely an edge) or a bounded 2-face in X. We define sup x (resp. 
infx)  to be the ray with maximal (resp. minimal) slope in the closure o fx .  The operator 
sup (resp. inf) is a one-to-one correspondence between the set of  bounded 2-faces in X2 
and the set of  vertices in X0. For a vertex x we denote by sup(x) the unique 2-face y 
with i n f ( y ) ' =  x. Similarly, inf(x) is the unique 2-face y with sup(y) = x. In this way 
inf and sup are defined for all vertices, edges, and bounded 2-faces of  X. 

For a bounded 2-face x the vertices sup x and infx  subdivide the boundary of  x 
into two curves, called the upper and lower boundary of  the face. Observe also that the 
boundary of  the unbounded 2-face has two connected components that are the canonical 
images of  the curves of  rays Y+o and y - o .  

Remark  6. The numbers of  0-, 1-, 2-, and 3-faces of  the visibility complex Y are 
2k, 4k, 2k -t- 1, and n -t- 2, respectively; here k is the number of  free bitangents. This 
equality is a consequence of  the previous discussion, namely on the bijection between 
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the set of bounded 2-faces and the set of  1-faces, the shape of the vertex-figure, and 
the number (n + 2) of  3-faces. The number of flags of P(Y)  is 24 times the number of  
vertices, i.e., 48k. 

2.3. The Poset (X, _ )  and the "Minimum-Element" Property 

Now we turn X into a poset (X, ~ )  by taking the transitive and reflexive closure of  the 
relation _ ,  defined by 

infx -< x -~ supx,  Yx ~ X1 tO X~, (1) 

i.e., for t, t '  6 X0 we have t _ t '  if there exists a finite sequence of edges and/or 2-faces 
xl . . . . .  xt in X such that (1) t = infxl ,  (2) supxi = infxi+l,  for i = 1 . . . . .  l - 1, 
and (3) supxt = t ' .  Observe that we can replace each face that appears in the sequence 
Xl . . . . .  xt by the sequence of edges of its upper (or lower) boundary. In other words, 
t ___ t '  if there is a counterclockwise oriented curve in the plane from bit(t) to bit(t ') that 
runs along the edges (arcs and bitangents) of the visibility graph of the obstacles (namely 
the arcs arc(x/) and the bitangents bit(v/) with vi = infxi,  where we assume that xi are 
edges), and which sweeps an angle of  Slope(t ')  - Slope(t). Clearly, ~_ is compatible 
on X0 with the slope order. Observe that for all x 6 X1 t_/X~ the cell supx (resp. x)  
covers the cell x (resp. infx) .  Finally note that the unbounded cells are isolated points 
in (X, ~) .  

Observe that if two bitangents belong to the boundary of a pseudotriangle of  some 
pseudotriangulation, then they are comparable. The same conclusion holds if the two 
bitangents are the diagonals of  some pseudoquadrangle (namely the union of two adjacent 
pseudotriangles) of  some pseudotriangulation. From this observation we deduce a more 
general condition of  comparability. 

L e m m a  7. Let t and t ~ be two bitangents in Xo. 

(1) lfbit(t) and seg(t ')  are crossing, then t and t' are comparable with respect to ~. 
(2) If  seg(t)\bit(t) and seg( t ' ) \b i t ( t ' )  are crossing, say in point p, and if there is no 

free line segment emanating from p, tangent to an obstacle in (9, and lying in the 
wedge t+ \t'+ (here t+ is the open half-plane bounded by the supporting line of 
bit(t), that contains the line segment bit(f)) ,  then t and t' are comparable with 
respect to ~. 

(3) t ~ yrk(t'),for all sufficiently large k. 

Proof Assume first that bit(t) and bit(F) are crossing. Clearly it suffices to prove that 
bit(t) and bit(t ') are the diagonals of  a pseudoquadrangle of  some pseudotriangulafion. 
To show the existence of a such pseudotriangulation we add four sufficiently small 
obstacles near the crossing point of bit(t) and bit(t ') as indicated in Fig. 8(a). Now we 
consider a pseudotriangulation (of the set of n + 4 obstacles) that contains the bitangent 
bit(t), and the 3 x 4 = 12 bitangents shown dashed in Fig. 8(a). Up to some flip 
operations we can assume that these 12 bitangents are the only bitangents that emanate 
from the 4 new obstacles. Removing these 4 added obstacles and their 12 bitangents 
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Fig. 8. (a) bit(t) and bit(t t) are crossing. The 4 added obstacles and the 12 added bitangents are shown 
dashed. (b) seg(t)\bit(t) and bit(t') are crossing. (c) seg(t)\bit(t) and seg(t')\bit(t') are crossing. 

yields a pseudotriangulation (since the number of  remaining bitangents is 3n - 3) with 
the desired property. A similar construction yields the result in the case where bit(t) 
and bit(t ') are disjoint, either in the case where seg(t) \bi t ( t )  and bit(t ' )  are crossing 
(see Fig. 8(b)), or in the case where seg(t) \bi t ( t )  and seg( t ' ) \b i t ( t ' )  are crossing (see 
Fig. 8(c)). In this latter case the condition given in the lemma ensures that up to some 
flip operations the added obstacle contributes only to the three dashed bitangents. After 
removing the added obstacles and their bitangents, bit(t) and bit(E) are edges of  the 
same pseudotriangle, and hence they are comparable. 

Now we prove claim (3). We can assume that bit(t) and bit(t ')  are disjoint. Consider a 
pseudotriangulation G that contains bit(t) and bit(t/), and consider a curve in free space 
that joins bit(t) and bit(t ').  This curve crosses a finite sequence of bitangents in G, say 
bl, b2 . . . . .  bl. Let tj E X0 such that bit(tj) = bj, with to = t and tt = t ' .  Since tj and tj+l 
are bitangents in the boundary of  a pseudotriangle (or both on the convex hull), they are 
comparable. Therefore tj ~_ yrkJ (tj+l) for kj sufficiently large. It follows that t ~ Jr k (t ')  
for k sufficiently large (k = ~ , j  kj). [] 

Now we come to the "minimum-element"  property announced in the Introduction. We 
denote by ~o the one-to-one mapping 

t e X0 ~-~ supsup t  e X0, (2) 

i.e., ~o(t) is the ray with maximal slope in the (closure of the) face for which t is the ray 
with minimal slope. It can easily be checked that ~o o n = Jr o ~o. 



Topologically Sweeping Visibility Complexes via Pseudotriangulations 431 

Fig. 9. Illustration of the proof of the "minimum-element" properly. 

L e m m a  8 ("Minimum-Element" Property). Let t and t' be two interior crossing bi- 
tangents in Xo (i.e., bit(t) and bit(t ') are crossing) with t -< t'. Then ~o(t) ~ t' (and 
t ~ ~o-l(t')). In other words, ~o(t) is the minimum bitangent in the set ofbitangents 
crossing t and larger than t. 

Proof Let p be the intersection point of bit(t) and bit(~0(t)), and let u and u* be 
the slopes of t and ~0(t), respectively. Let t(ot) = (p, c~u + (1 - t~)u*), seg(t(t~)) = 
[a(ot), b(ot)], and 

= U seg(t(c0). T 
~[0,1] 

Clearly, T is a subset of free space. Therefore the slope of t '  is greater than the slope 
of 9(t) ,  and bit(~o(t)) and seg(t') are crossing (first case), or bit(t') is tangent to the 
boundary of T (second case). See Fig. 9 for an illustration. Hence it suffices to prove 
that t '  and ~o(t) are comparable with respect to ~ in order to conclude that 9(t)  ___ t'. 
The first case is covered by Lemma 7, claim (1). In the second case bit(t ') is tangent to 
the arc {b(a) Iot ~ (0, 1)}, or to the arc {a(a) I ot ~ (0, 1)}. Both cases are covered by 
claim (2) of Lemma 7. [] 

Remark  9. Note that if t is an exterior bitangent, then the set {zr(t), rr2(t) . . . .  } is the 
set of bitangents greater than t and crossing t; this set has a minimum element, namely 
rr(t). 

2.4. Filters, Antichains, and Greedy Pseudotriangulations 

For a finite subset A of X we define the filter A + of (X0, 5 )  by 

A + = { x 6 X 0  I Y - - - x f o r s o m e y t A } .  (3) 
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The complement of A + in X0 is denoted by A-.  For a filter I of (X0, ___) we let I be the 
subset of X\Xo defined by 

i = { x T X i U X  ~ I s u p x e l ,  in fx(_I}U{unboundedfaces} .  (4) 

Note that, by definition, the set of unbounded faces is a subset of I.  
Aproper filter of a poset (X, ___) is a filter which is a nonempty proper subset of X. 

Lemma 10. The mapping I w-~ I is a one-to-one correspondence between the set of 
proper filters of ( Xo, "<) and the set of maximal antichains of ( X \ Xo, ~ ), whose inverse 
is the map A ~-~ A +. 

Proof Firs tweshowtha t l i samaximalan t icha inof (X\X0,  _ ) . L e t x  �9 I , y  �9 X \Xo  
with x -< y, or y ~ x. Then y r I .  If  x -< y we have sup x ___ inf y and, therefore, 
infy �9 I ,  since supx �9 I .  This implies that y r L A similar conclusion holds if we 
assume that y -<x. This proves that I is an antichain. 

Now we prove that the antichain I is maximal. Let x �9 X \Xo  and consider the 
unrefinable chain { . . . .  infZ(x), inf(x), x, sup(x), sup2(x), sup3(x) . . . .  }. By Lemma 7, 
part (3), this chain joins Xo\ l  and I. Consequently, this chain intersects I ,  and x is 
comparable with an element in I .  Finally observe that (I)+ = I ,  since (1) rain I C (I)+ 
and (2) (rain I )  + = I .  Note that, in view of Lemma 7, part (3), I contains no infinite 
decreasing chains. [] 

Theorem 11. Let A be a maximal antichain in (X\Xo,  ~). Then: 

(1) A depends only on its subset of 1-faces. More precisely, A is the union of the 
cofaces in P ( X) of its 1-faces. Furthermore, P ( A ), the subposet of P ( X) induced 
by A, is an abstract polytope of rank 3. 

(2) The numbers of 1-, 2-, and 3-faces in A are respectively 2n, 3n, and n + 2 (and 
consequently P ( A ) is spherical). 

Proof. Let x be an edge in A and let y be a 2-face incident to x. Clearly, infy -~ x -< 
supy, so infy e A-  and supy �9 A +. Therefore y �9 A. 

Conversely, let y be a 2-face in A. Clearly, its upper chain and lower chain are 
unrefinable, and join infy �9 A-  to sup y �9 A +. Therefore these two chains intersect A. 
This proves claim (1). 

The curves Yi, i �9 {4-1 . . . . .  +n}, are edge-disjoint maximal chains, that together 
cover the set of edges of X. Therefore there is exactly one edge of the maximal antichain 
on each of these curves. Hence the number of edges in the antichain is 2n. According 
to claim (1) and Theorem 5, the number of incidences between edges and 2-faces of 
a maximal anfichain is three times the number of edges, and twice the number of 2- 
faces. Therefore the number of 2-faces is 3n. Planarity is proved by computing the Euler 
characteristic. [] 

Let I be a filter and let B1 (I),/32(1) . . . .  be the sequence of subsets of I defined by 
(1) B1 (I)  is the set of minimal bitangents in I,  and (2) Bi+l (I) is the set of minimal 
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bitangents in the set of bitangents in I disjoint from the bitangents in B1 (I) . . . . .  B i (I) .  
Since the bitangents in Bj (I)  are pairwise noncomparable they are pairwise disjoint, and 
consequently Ui>_I Bi(I)  is a pseudotriangulation in X (in particular Bi( l )  = ~ for i 
sufficiently large). This pseudotriangulation is denoted by G (I) and is called the greedy 
pseudotriangulation associated with the filter 1.3 Finally, for a filter I we define 

S ( I ) = { b ~ l  I ~ o - ~ ( b ) r  (5) 

Now we come to the proof of Theorem 2, announced in the Introduction. We give 
a slightly stronger form. For Y C X0 we denote by Yint (resp. Yext) the subset of- Y 
consisting of interior (resp. exterior) bitangents. 

Theorem 12. 

(1) For all filters 1, and all interior (resp. exterior) bitangents b ~ ro_in I, the set 
difference G ( I \ { b } ) \ G ( 1 )  is equal to {tp(b)} (resp. {yr(b)}). 

(2) For all filters I,  all bitangents b E G (I),  and all t E I crossing b, we have b "< t. 
(3) For all filters I we have Gint( / )  = Sint(/).  

Proof. Claims (1) and (2) are obvious in the case where b is an exterior bitangent (see 
Remark 2); therefore we assume now that b is an interior bitangent. We prove the theorem 
by showing that claim (3) implies (1), and subsequently that (1) implies (2), after which 
we establish the truth of claim (3). 

First observe that ~0(b) is disjoint from any b' ~ G( l ) \ {b} ,  otherwise ~o(b) and b' 
are comparable, with b' -< r (indeed if ~o(b) -< b', then, according to Lemma 8, 
r _ tp -1 (b'); consequently r (b') e I,  i.e., b' ~[ G(I)) .  According to Lemma 8 this 
implies that b' ___ b, a contradiction with b e min I. Therefore, it is sufficient to prove 
that ~o(b) is a bitangent in G(l \ {b} ) .  Suppose the contrary holds. Then r intersects 
some b' e G(I \ {b}) ,  with b' -< r However, according to Lemma 8, this implies that 
b' ~ b, a contradiction. Thus, claim (3) implies claim (1). 

Now we prove that claim (1) implies claim (2). To this end let I be a filter, let b be a 
bitangent in G(I )  and let t be a bitangent in I which crosses b. We define the sequence of 
filters I1, 12 . . . .  by I1 ---- I and Ik+l = Ik\B1 (Ik). Observe that if b ~ G (Ik) \Bl  (Ik) and 
t ~ l k ,  then b ~ G(Ik+I) and t ~ Ik+l. Therefore, there exists a k such that b ~ B1 (Ik). 
From this we deduce that b ~ t, since b is minimal in Ik. Thus, claim (1) implies 
claim (2). 

Finally we prove claim (3) by proving successively that: 

(i) Sint(1) C Gint( / )  (in particular the bitangents in Sint(1) are pairwise disjoint). 
(ii) aext(/)  C Sext(I) and Card Sext(1 ) = Card Gext(1) q- 2. 

(iii) Card S( I )  = 3n - 1. 

These three properties imply that Gint( / )  = Sint(I),  since Card G(I )  = 3n - 3. 

3 Observe that if ~1 is a total order on 1, compatible with _< on I, then the elements of the set G(1) can 
be enumerated as the sequence bl. b2 . . . . .  b3n-3, where (1) bl is the minimum bitangent in (l, _1), and (2) 
bi+l is the minimum bitangent in (I, _~1) disjoint from bl. b2 . . . . .  bi. 
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Let b be an interior bitangent. Then (first case) there is a b' E G(1)  crossing b, with 
b' -< b, or (second case) for all b' ~ G( I )  crossing b we have b _~ b'. In the first case 
Lemma 8 implies that b' ~ ~0 -1 (b), and consequently that b ~[ S( I ) .  In the second case 
b is smaller than any bitangent in G(I )  crossing it, therefore b ~ G(I ) .  This proves 
claim (i). 

For an exterior bitangent t lying on Y+o (resp. •'-o) we denote by succ(t) the minimal 
exterior bitangent greater than t lying on Y+o (resp. Y-o)- Observe that succ(rc(t)) = 
zr(succ(t)) = ~0(t) whenever t is an exterior bitangent in X0, and that the number h 
of  exterior bitangents in B is defined by succ h = zr 2. Let t be the minimal element in 
I lying on Y+o. Since succ -1 (t) ~ I it follows that qg-l(t) and ~0-1(rr(t)), which are 
respectively equal to jr-1 (succ-1 (t)) and SUCC-I(t), are not in I;  thus t and zr (t) are both 
in S(I) .  A similar result holds for the minimal element in I,  say t', lying on ) ' -0 .  Now 
we consider the sequence 

t, succ(t), succ2(t) . . . . .  

Clearly, if succ j+l (t) ~ S( I ) ,  then succJ ~ S( I ) .  Therefore, there is a k such that 
succJ(t) ~ S(1) for j = 0, 1 . . . . .  k and succJ(t) ~g S(1) for j > k. Now observe 
that zr(t') lies on Y+o. Hence, succk(t) = Jr(t'), since ~r(t') ~ S( I )  and succ(zr(t')) = 
~o(t') ~[ S(I ) .  Similarly, succk'(t ') = zr(t), where k' is the greatest index such that 
succk'(t ') ~ S( I ) .  It follows that SUCCk+k'(t) = ~r2(t) and, consequently, that k + k ~ = h. 
Now observe that Gext(1) is a subset of 

{t, t', succ(t), succ(t'), succ2(t), succ2(t ') . . . . .  }, 

and that succ j+1 (t) • G (I)  if  succ j (t) r G (I).  Therefore, Gext (I)  __Q Sext (I),  since zr (t) 
and yr(t ~) are not in Gext(I). Furthermore, a cardinality argument shows that Sext(l) = 
Gext(I) (3 {zr (t), 7r (t')}. This proves claim (ii). 

Finally note that S( I )  = sup I = sup ~?\X1, and consequently Card S( I )  = 3n - 1, 
according to Theorem 11. This proves claim (iii), and therefore completes the proof of 
the theorem. [] 

3. The Greedy Flip Algorithm and Its Analysis 

3.1. The Algorithm 

For u ~ ~ we denote by I (u) the filter ofbitangents in X0 with slope at least u. Theorem 2 
suggests a very simple algorithm: maintain the greedy pseudotriangulation G(I ) ,  while 
I ranges over a maximal chain of filters in the interval [I (0), I (~r)]. 

Algori thm GREEDY FLIP ALGORITHM 

1 compute the greedy pseudotriangulation G := G ( I  (0)); 
2 repeat 
3 select a minimal bitangent b in G with slope less than Jr; 
4 flip b; (i.e., replace b by ~0(b) (resp. rr(b)) if b is an interior (resp. exterior) 

bitangent) 
5 until there are no more bitangents of  slope less than Jr. 
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Theorem 2 proves the correctness of this algorithm. Of course, we still have to explain 
how to implement the flip operation (namely line 4) and how to select a minimal bitangent 
with slope less than Jr (namely line 3), so that the total cost of these operations is O (k) 
time. Figure 10 illustrates the greedy flip algorithm. In this example the flipped bitangent 
has minimal slope, and is therefore a minimal element with respect to the partial order -<. 

In Section 3.2 the construction of the initial pseudotriangulation G (I (0)) is described 
in detail. Section 3.3 describes how to select a minimal bitangent. Section 3.4 describes 
an efficient implementation of the flip operation, whose amortized cost is analyzed in 
Section 3.4.5. 

3.2. Construction of the Initial Greedy Pseudotriangulation G (1 (0)) 

Lemma 13. The greedy pseudotriangulation G (I (0)) of a collection of n disjoint con- 
vex obstacles in the plane can be computed in 0 (n log n) time. 

Proof The construction is based on a standard rotational sweep h la Bentley-Ottmann, 
from direction 0 to direction re, during which we maintain the visibility map associated 
to the current direction. For simplicity assume that no free bitangent has slope 0. A useful 
aid in the construction of G := G(I(O)) is the greedy visibility map M(u), associated 
with a slope u e [0, rr]. Let B(u) be the bitangents in G with slope less than u. Note 
that B(0) = 0, and B(zr) is the set of bitangents in G. 

Every object O contains two points having a tangent line with slope u. These points 
are said to be of type left and right depending on whether the tangent line contains the 
object in its left or right half-plane. The points are denoted by 0 (u, left) and 0 (u, right). 
The collection of all these points is denoted by V(u). 

Two distinct objects O and O r have exactly eight common directed tangent lines. 
They form four pairs, denoted by (O, O', r, r '),  where r and r t are either left or right. 
For instance, (O, O', left, right) is the tangent line going from O to O', containing O 
in its left half-plane and O' in its right half-plane. 

From each point of V(u) we shoot two rays, one with slope u, the other one with 
slope u + rr. We extend these rays until they hit an object, or a bitangent in the collection 
B(u). In this way we partition free space into a number of regions that contain either 
one or two points of V(u) in their boundary. These regions are called triangular and 
quadrangular, respectively. For convenience the two unbounded regions, in which we 
can walk in direction u +yr/2 and u - rr/2, respectively, are called quadrangular as well, 
even though they contain one point of V(u) in their boundary. 

If two triangular regions contain the same point p of V(u) in their boundary, they 
are incident along one of the rays emerging from this point. We then merge these two 
regions by removing this ray. The point p is still the only point of V(u) in the boundary 
of the merged region, which therefore is still triangular. The subdivision of free space 
that remains after removing all rays shared by triangular regions is called the greedy 
visibility map with respect to u. It is denoted by M(u). Figure 11 depicts M(u) for the 
initial direction u = 0, and the direction u = rr/2. 

The greedy visibility map M(0) coincides with what is usually called the horizontal 
visibility map of the collection O. It can be constructed in O(n log n) time using a 
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Fig. 10. The greedy flip algorithm. At each step the internal bitangent of minimal slope in the current 
pseudotriangulation is flipped. 



Topologically Sweeping Visibility Complexes via Pseudotriangulations 437 

Fig. 11. (a) The labeled regions in the upper left part form the faces of the initial visibility map M(0). The 
graph F(0) is depicted in the upper right part. (b) The labeled regions in the lower left part, together with the 
lightly shaded regions, are the regions of the visibility map M(zr/2). The lower right part represents the graph 
r(Tr/2). 

standard sweep line algorithm. Furthermore, the subdivision M(yr) is just the greedy 
pseudotriangulation G (if we forget about the four unbounded faces that partition the 
complement of the convex hull). So we try to maintain M(u) as u ranges over [0, rr]. 

We describe the construction of  the sequence B(n)  of  bitangents belonging to the 
pseudotriangulation. This method can be extended in a straightforward way to maintain 
M(u) as well. The appearance of a free bitangent corresponds to the disappearance of  
a quadrangular region. For example, in the situation depicted in the lower left part of  
Fig. 11 the topology of M(u) will not change as u rotates beyond zr/2, until u passes the 
slope of  the bitangent contained in the quadrangular region labeled "6." We represent 



438 M. Pocchiola and G. Vegter 

Fig. 12. death(e) is the critical direction associated with region e. 

the subdivision corresponding to the quadrangular regions of M(u) by a directed graph 
F(u), defined as follows. 

Each quadrangular region of M(u) contains two points of V(u) in its boundary; We 
connect these points by drawing a path in this region that is increasing with respect to 
the direction u + Jr/2. In this way we obtain a directed plane graph F(u), whose set 
of edges is in one-to-one correspondence with the set of quadrangular faces of M(u), 
and whose vertices are the points of V(u) in the boundary of the quadrangular faces; 
see Fig. 11. There are two infinite edges, corresponding to the quadrangular faces that 
contain only one point of V (u) in their boundary. The graph F (0) contains 3n + 1 edges, 
and F(zr) contains four edges. We shall see that there are 3n - 3 events corresponding 
to the disappearance of an edge, and therefore to the appearance of a bitangent. This is 
of course related to Lemma 3. 

Consider now an edge e of the graph F(u). Its terminal points are O'(u, r ') and 
O"(u, r").  There are at most two tangent lines of type (O', O", r ' ,  r") ,  whose slopes 
lies between 0 and u. Let death(e) be the direction of these lines that is minimal, if this 
minimal element exists, or 7r otherwise; see Fig. 12. 

Let D(u) be the set of directions defined by 

D(u) = {death(e) I e is an edge of F(u) and death(e) < Jr}. 

The following obvious result is crucial for the correctness of the algorithm constructing 
the initial pseudotriangulation. 

Lemma 14. Let the unit vectors u' and u" be the directions of two consecutive elements 
of B(zr). 

1. The set Z)(u) does not change when u ranges over the open interval (u', u"). 
2. The critical direction u" is the minimal element of D(u ),for u between u' and u". 

We now describe the transition at the next critical direction, namely (i) updating the 
graph I'(u) when u passes this critical direction, and (ii) updating the set ~D(u). It is not 
hard to see that (i) takes O(1) time, and (ii) takes O(log n) time, due to the maintenance 
of a priority queue. Figure 13 depicts a few cases. 

We also describe the birth of pseudotriangles: the number of vertices of degree 3, plus 
the number of triangular regions, is invariant. This is obvious in the situations depicted 
in Fig. 13. It also holds in the case where at least one of the regions a, b, c, and d 
is triangular, as illustrated in Fig. 14. Note that the triangular regions grow during the 



Topologically Sweeping Visibility Complexes via Pseudotriangulations 439 

Fig. 13. Transitions during the construction of the pseudotriangulation. 

sweep, so not all combinations of triangular and quadrangular regions are possible. For 
instance, in the upper left part of Fig. 13 it is not possible that region a is triangular whilst 
at the same time d is quadrangular, since in that case triangular region a does not grow: 
it shrinks near the edge along which it is incident with d. Finally the pseudotriangulation 
G(I (0)) can easily be computed from the set of bitangents B(n). 

3.3. Minimal Bitangents 

Consider a filter I, a bitangent b in the greedy pseudotriangulation G(I) ,  and a pseudo- 
triangle T of G(I). We denote by BT the set of bitangents t ~ G(I) such that bit(t) 
appears in the boundary of T. The partial order -.< restricted to Br is a linear order. 
The minimal element of Br is denoted by br. We denote by Ltri(b) (resp. Rtri(b)) the 
pseudotriangle of G (I) incident upon bit(b) and--locally--to the left (resp. right) of 
bit(b), oriented along the direction of b. The initial point of a directed line segment b 
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Fig. 14. Transitions during the construction of the pseudotriangulation: at least one of the regions a, b, c, 
and d is triangular, and hence not represented by an edge in the graph F(u). 

is denoted by Tail(b), the terminal point by Head(b); so b is directed from its tail to its 
head. The basepoint of T, denoted by Pr, is the tail of br, if T = Rtri(br), or the head 
of bT, if T = Ltri(br). 

The direction of the tangent line in a point p of 0 T is uniquely determined by the 
requirement that its slope lies in the interval [Slope(br), Slope(br) + zr). This slope 
is also called the slope of p. Note that the slope is continuous on a T, except at the 
basepoint of T. A directed subsegment of 0T is called a walk (resp. reverse walk) along 

T if, going from the initial to the terminal point of the subsegment, we pass the points 
of the subsegment in order of increasing (resp. decreasing) slope. A walk (resp. reverse 
walk) goes around T clockwise (resp. counterclockwise) when viewed from inside T. 
In particular, the walk starting at the basepoint of T defines a linear order on the set of 
bitangents in bit(Br), called the slope order, which coincides, via the mapping bit, with 
the linear order -< on Br. We denote by b+ (resp. b_) the minimal bitangent in G(I)  
lying on Y+o (resp. Y-o), if it exists. 

Lemma 15. Let I be a filter. Then an interior (resp. exterior) bitangent b is minimal 
in I if and only if b = bRtri(b) ---- bLtri(b) (resp. b = bRtrifb) = b_, or b = bLtri(b) = b+ ). 

Proof. Assume b is an interior bitangent. Let e and e' e X 1 be such that sup(e) = 
sup(e') = b, and such that arc(e) and arc(e') are on the boundaries of Rtri(b) and 
Ltri(b), respectively. Clearly, b = bRtri(b) ( r e s p .  b -~  bLtri(b))  iff e E I (resp. e' E I). 
Since b is minimal in I iff e, e' e ,~, the result follows. A similar argument applies if b 
is an exterior bitangent. [] 

The successive cusps we pass during a walk starting at the basepoint of T, are denoted 
by xr,  yr and zr. If the basepoint is a cusp, then by definition it is zr. The forward and 
backward T-views of point p in 0 T are the points of intersection of 0 T with the tangent 
line at p, lying ahead of and behind p, respectively. The point, whose forward (resp. 
backward) T-view is Pr, if T = Rtri(br) (resp. T = Ltri(br)), is denoted by qr. See 
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Fig. 15. Forward and backward T-views P0 and pl of t cannot both have smaller slope than t. 

also Fig. 18. To avoid confusion, we stress that the forward (resp. backward) view from 
a point along a directed line is defined with respect to the set of obstacles (and not with 
respect to the set of pseudotriangles); see Section 2.2, where this view is defined as an 
obstacle. 

For later use we isolate a simple, but crucial, feature of pseudotriangles of greedy 
pseudotriangulations. 

Lemma  16. Let T be a pseudotriangle of a greedy pseudotriangulation. 

1. I f  zr  ~ Pr, then the part of OT between ZT and Pr is an arc. 
2. I f  yr  lies between xr  and qr, then the part of  OT between Yr and qr is an arc 

(i.e., it contains no bitangents). 

Proof. We prove that no bitangent t ~ Br has forward and backward T-views of 
smaller slope. This will prove part (1), since all points on the segment z r p r  have both 
forward and backward T-view of smaller slope. A similar argument proves part (2). 

To prove the claim, suppose that both the backward and forward T-view, P0 and Pl 
say, of t have smaller slopes than t. We only consider the case in which P0 has smaller 
slope than Pl. See Fig. 15. Then T = Ltri(t), and the part of 0T between P0 and Pl 
lies completely to the left of the line supporting t. Let t '  be the other bitangent (different 
from t) between T = Ltri(t) and Rtri(t). We give t '  the direction that is compatible 
with the slope of its head and tail. The bitangent t '  intersects t and its tail p '  is a point 
on 0T between P0 and Pl, therefore its slope is less than the slope of t. However, t 
and t '  are crossing; and consequently t '  -< t in contradiction with the greediness of the 
pseudotdangulation (claim (2) of Theorem 12). This proves the lemma. [] 

3.4. Flipping Minimal Bitangents 

3.4.1. The New Pseudotriangles R' and L'. Consider a minimal bitangent b (with 
respect to some filter I), with R = Rtri(b) and L = Ltri(b). Let b* = ~o(b) be the 
bitangent obtained by flipping b. Its tail and head are denoted by p* and q*, respectively. 
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Fig. 16. The pseudotriangle R' = Rtri(b*) (shaded) is obtained by flipping bitangent b. Furthermore, R' is 
the left or right pseudotriangle ofb~ (cases 1 and 2, respectively), or OR' does not contain b~ (case 3). 

The right and left pseudotriangles of  b* (with respect to the filter l \{b}) are denoted 
by R / and L' ,  respectively. We denote by G and G '  the pseudotriangulations G ( I )  and 
G( l \ {b} ) ,  respectively. We consider the bitangent br for T = R' ,  L' .  We only consider 
the pseudotriangle R'  (the story for U is completely similar). Let b~ be the successor of  
b in BR. The minimal element of  BR, is one of  the bitangents b~ and b*, namely the one 
with smaller slope. So b* = min BR,, if  p* lies between b and b~, and b~ = min BR,, 
otherwise. Hence there are three basic cases, that return throughout this section. They 
are illustrated in Fig. 16. 

Case 1: b and b' k are not separated by a cusp of  R. Then R'  = Rtri(b~), and p* does 
not lie on the arc between b and b~. Therefore min BR, = b'R. 

Case 2: b and b' R are separated by a cusp o f  R, and p* does not lie on the arc between b 
and b'R. Then R' = Ltri(b~ ) and min BR, = b' R. (Note: in this case XR = Head(b'R), as 
in Fig. 16, or xR = Head(b).)  

Case 3: b and b' R are separated by a cusp o f  R, and p* lies on the arc between b and b~. 
Then min BR' = b*. 

The bitangent min BL, is defined similarly. 
We now consider the pseudotriangle R'  in more detail, in particular its cusps XR,, YR', 

and ZR'. 

Case 1: R ~ = Rtri(b~). In this situation b and b~ are not separated by a cusp, so 
XR' = xR. Furthermore, if  p* lies between XR and YR, then the second cusp YR' is equal 
to p*, otherwise it is equal to YR; see Fig. 17(a). Similarly, the third cusp ZR, is equal to 
YL, if  q* lies between xL and YL, otherwise it is equal to q*, as illustrated in Fig. 17(b). 

Case 2: R '  = Ltri(b'R) and b~ = rain BR,. In this case the basepoint of  R'  is Head(b'R), 
which lies between xR and YR. Therefore the first cusp XR' is equal to p*, if  p* lies 
between XR and YR, otherwise it is equal to YR; again see Fig. 17(a). Similarly, the 
second cusp yR' is equal to YL, if  q* lies between xL and YL, otherwise it is equal to q*; 
see Fig. 17(b). Finally, the third cusp ZR, is equal to ZL, i f  Head(b) = XR, otherwise it is 
equal to XR, as illustrated in Fig. 17(c). 

Case 3: R'  = Rtri(b*) and b* = mJn BR,. In this case Head(b) = XR, and the tail p* of 
b* lies on the arc of OR separating b and b~. Therefore the basepoint of  R'  is p*, which 
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Fig. 17. The cusps of R ~. 

is also equal to the third cusp zn,; see the left part of Fig. 17(a) for this situation. Since 
in this case xn is a cusp of R, the second cusp Yn' is equal to zL, as depicted in the left 
part of Fig. 17(c). Finally Fig. 17(b) shows that the first cusp xn, is equal to YL or q*, 
depending on whether q* lies between YL and zL, or between xt~ and YL. 

Table 2 summarizes the previous discussion. 

3.4.2. The Splittable Queue Awake[T]. Conceptually the flipping can be done by 
walking--in the positive direction, starting at the basepoint--along the boundaries of 
the pseudotriangles L (left) and R (right) incident upon the flipped bitangent b, with 
one leg in every pseudotriangle, such that at any moment the tangent lines at the points 
underneath our left and right legs are parallel. We keep walking until these tangent lines 
coincide. At that point we have found b*. This is too expensive, since some bitangents 
may be passed during many walks involved in the flip operations. To cut the budget, we 
need an auxiliary data structure, that enables us to start the walk at a more favorable point. 

Observe that the tail p* of b* lies between the first cusp xR and the point qn, whose 
tangent contains the basepoint Tail(b) of R. Similarly, q* lies between xL and qL. 

Definition 17. For a pseudotriangle T, a point in 3 T is called awake if it lies between 
xr  and qT. 

Table 2. The cusps of R ~. 

XR, YR' ZR' 

Case 1 XR YR or p* YL or q* 
Case 2 YR or p* YL or q* ZL or XR 
Case 3 yL or q* ZL p* 
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Fig. 18. The set of points that are awake in T is the segment XTqT, for T = L, R. When the algorithm flips 
b = bR = bL, the walk on 0T starts in q~ (case 1) or in the cusp xr (cases 2 and 3). 

Note that the points of 0R that are awake have forward R-view of smaller slope, 
whereas the points awake in OL have backward L-view of smaller slope; see Fig. 18. 
Lemma 16 tells us that the set of points that are awake is a sequence of arcs and bitangents 
on a convex chain, possibly followed by a single arc between y~ and qr (in case qT" does 
not lie between x r  and Yr). 

If  b and its successor b~ in BR are not separated by the cusp xR, corresponding to 
case 1 in Section 3.4.1, the point p* lies even between q~ and qR, where q~ is the point 
whose tangent contains Tail(b'R), as shown in Fig. 18. 

So the walk along OR starts at q~ in case 1, and in xR, otherwise. Similarly, the walk 
along OL starts in q~ or in xL, where q~ is the point on OL' whose tangent contains 
Head(b~).  Now x r  can be determined in O(1) time, but how do we determine q~ 
efficiently, for T = L, R? To this end we consider the segment x r q r  of points in OT, 
that are awake, as an alternating sequence ofbitangents and arcs, or atoms for short, where 
the atoms are in slope order. This sequence is represented by a splittable queue, denoted 
by Awake[T], a data structure for ordered lists that allows for the following operations: 

1. Enqueue an atom, either at the head or at the tail of the list. 
2. Dequeue the head or the tail of the list. 
3. Split the sequence at an atom x; this split is preceded by a search for the atom x. 

A few comments on the split operation are in order. We assume that the initial search 
for the atom x is guided by a real-valued function, f say, defined for atoms in the se- 
quence, that is monotonous with respect to the order of the atoms in the sequence. Now a 
split amounts to determining the atom x for which f ( x )  = 0, and successively splitting 
the sequence (destructively) into the subsequences of atoms with negative f-values and 
those with positive f-values. More specifically, to find the point q~ (in case 1) we do a 
split operation in Awake[T], where the search for q~ is guided by the position of Tail(b~r) 
with respect to the tangent lines at the terminal points of an atom. See Section 3.4.3 for 
more details on this split operation. 

Lemma  18. There is a data structure, implementing a splittable queue, such that an 
enqueue or dequeue operation takes O(1) amortized time, and a split operation at an 
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atom x on a queue of n atoms takes 0 (log rain(d, n - d) ) amortized time, where d is the 
rank of x in the sequence represented by the queue. Moreover, a sequence of m enqueue, 
dequeue and split operations on a collection of n initially empty splittable queues is 
performed in 0 (m) time. 

For more details and a sketch of the proof see Appendix B. For our current purposes 
we stress that we maintain, for each pseudotriangle T, a splittable queue Awake[T], 
satisfying the following invariant: 

Invariant 1. Awake[T] represents the segment x~qv of OT (the atom containing xr  
being the head of the queue). 

We now describe in more detail (i) how to compute b*, using Awake [R] and Awake [L], 
and (ii) how to restore Invariant 1 for the new pseudotriangles R' and L'. Subsequently 
we prove that the total cost of (i) and (ii) amortizes to O (k). 

3.4.3. Construction of b*. If b and its successor b~ in BR are not separated by the 
cusp xR of R (case 1), then during the construction of b* the walk along OR starts in 
q~. In this case we split Awake[R] at q~ into AwakeMin[R] and AwakeMax[R]: where 
the atoms in the former queue have smaller slope than the atoms in the latter queue. 
Otherwise, namely if b and b~ are separated by the cusp xR, we set AwakeMin[R] +- 13 
and AwakeHax[R] ~ Awake[R]. Here 13 denotes the empty queue. In either case p* lies 
on an arc, represented by an atom in the queue AwakeHax[R]. We similarly initialize 
the splittable queues AwakeHin[L] and Awaket4ax[L]. 

Now the simultaneous walk along 0 R and 0 L can be implemented by dequeuing atoms 
from AwakeHax[R] and AwakeMax[L], until the atoms (arcs) are found that contain p* 
and q*, respectively. Obviously, this sequence of synchronous dequeue operations takes 
time proportional to the number of dequeued atoms. So we construct b* at the cost of at 
most one split on Awake[R] and at most one split on Awake[L], followed by a number 
of successive dequeue operations. 

We finally adjust the first atoms in the queues AwakeHax[R] and AwakeHax[L] 
(namely the atoms containing p* and q*, respectively) by replacing their terminal points 
of smaller slope with p* and q*, respectively. After this final operation the splittable 
queues AwakeHa• and AwakeHa• represent the segments P*qR of OR and q*qL 
of OL, respectively. We use these queues in the construction of the queues Awake[R'] 
and Awake[U]. We summarize the preceding discussion in the following piece of 
pseudocode. 

Algorithm COMPUTING b* 

1 ifxR does not separate bR and b~ then 
2 Comment: case 1 
3 search for arc in Awake[R], containing q~ 
4 split Awake[R] at q~, into AwakeMin[R] and AwakeMax[R] 
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5 else Comment: cases 2 and 3 

6 AwakeMin[R] +- 
7 AwakeMax[R] +- Awake[R] 
8 endif Comment: AwakeMax[R] represents q'RqR (case 1) or XRqR (case 2, 3) 
9 Construct AwakeMin[L] and AwakeMax[L] similarly 

10 Find p* and q* by synchronous linear search on AwakeMax[R] and 
AwakeMax[L], meanwhile dequeuing atoms not containing p* and q*, 
respectively 

11 Set initial point of first atom in AwakeMax[R] to p* 
12 Comment: AwakeMax[R] represents subsegment P*qR of OR 
13 Set initial point of first atom in AwakeMax[L] to q* 
14 Comment: AwakeMax[L] represents subsegment q*qL of OL 

3.4.4. Construction of Awake[R'] and Awake[L']. To facilitate efficient maintenance 
of the collection of queues Awake[T], for all pseudotriangles T, we also maintain the set 
of points of 8T between the second cusp Yr and the third cusp zr ,  that are not awake. 
These points are called asleep. They form a convex chain, namely the segment y r z r  or 
qrzr  of OT, depending on whether qr lies between xr  and yr  or between Yr and zr .  
This convex chain is also represented by a splittable queue Asleep[T] ,  whose atoms 
represent the arcs and bitangents of the chain in order of increasing slope. In other words, 
we maintain, for each pseudotriangle T, the following invariant: 

Invariant 2. Asleep[T] represents the following segment of OT: YrZr, i f q r  ~ YrZr, 

and qrzr ,  if qr 6 YrZr. 

We only describe how to establish Invariants 1 and 2 for pseudotriangle R'; the in- 
variants are established similarly for L'. In particular we show that the construction of 
the queues Awake[R'] and Asleep[R']  from the queues AwakeMin[R], AwakeMax[R], 
Asleep[R],  AwakeMin[L], AwakeMax[L] and Asleep[L] ,  requires only a number of 
dequeue and at most four enqueue operations. Again we consider each of the cases, 
introduced in Section 3.4.1, separately. 

Case h R' = Rtri(b'R). Since in this case Head(b) is not a cusp of R, it is a cusp of L. 
Figure 16, case 1, illustrates this observation. More precisely, Head(b) = ZL. Moreover, 
the point of OL whose tangent contains the basepoint Head(b) of OL, coincides with 
Head(b), so we also have ZL = qL. In particular all points of OL between XL and Zr are 
awake in L. Furthermore, the basepoint of R' is Tail(b'R), so we have qR' = q~- Hence, 
by definition, all points that are awake in R' lie between XR (= XR,) and q'R" This justifies 
line 2 in the following piece of pseudocode: 

Algorithm CONSTRUCTION OF Awake[R'] AND As i eep[R']: CASE 1 
I Comment: Awake[L] ----- XLZL, Asleep[L] = 0 

2 Awake[R'] +- AwakeMin[R] 
3 Comment: Invariant 1 holds for R' 
4 if ZR, = YL then 
5 Asleep[R'] +- AwakeMax[L] 
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6 dequeue last atom from Asleep[R ' ]  
7 else Comment: ZR' = q* 
8 Asleep[R'] +- 
9 endif Comment: As i eep[R'] represents subsegment of q*ZR' C 0 R' of points 

asleep in OR' 
10 enqueue segment b* = p 'q*  at the head of As leep[R ' ]  
11 Comment: A s l e e p [ R ]  represents p*ZR' C OR' 

12 ifyR, = YR then 
13 ifqR, e XRYR then 
14 enqueue arc YRP* at the head of As leep[R ' ]  
15 else Comment: qR' E YRZR 
16 enqueue arc qR'P* at the head of Asleep[R] 
17 endif 
18 else Comment: YR' = P* 
19 skip (do nothing) 
20 endif Comment: Invariant 2 holds for R' 

To see how Asleep[R'] is constructed in lines 3-20, first observe that b* is asleep in 
R', since it lies on the segment YR'ZR' of OR', beyond the point q~ (= qR')- 

Lines 4-9 initialize A s l e e p [ R ] ,  so that it represents the chain of points on q*ZR', 
that are asleep in R'. To see this, recall from the end of Section 3.4.3 that AwakeMax[L] 
represents the segment q*ZL of OL, since qL = zL. Furthermore, Lemma 16, part (2), 
tells us that the segment YLZL is a single arc. Therefore this arc is the last atom in 
AwakeMax[L]. So if ZR' = YL (see Table 2), we initialize A s l e e p [ R ]  in line 5, after 
which we dequeue the last atom from this queue in line 6. I fzn,  = q* the segment q*ZR, 
is empty, justifying the assignment in line 8. 

To complete the construction, observe that b* is asleep in R'. Therefore we enqueue, 
in line 10, an atom representing b* onto Asleep[R' ] ,  after which this queue repre- 
sents the chain p*ZR'. If Yn' = P*, this completes the construction of Asleep[R' ] .  
This case is handled in lines 18 and 19. So according to Table 2, it remains to consider 
the case YR' ---- YR. This is done in lines 12-17. According to Lemma 16, the segment 
YRP* C YRqR, is a single arc. IfqR, (= q~) lies between XR and YR, all points on the arc 
YRP* are asleep in R', so the first atom of Asleep[R ' ]  should represent this arc. Finally, 
if q~ e yRZR, the first atom of As leep[R ' ]  should represent the arc q'kP*. In either 
case we enqueue an atom at the head of Awake[R], which represents an arc with 
terminal point p*, and initial point YR'. This completes the construction of A s l e e p [ R ]  
in case 1. 

Case 2: R' = Ltri(b'R) and b' R = min BR,. We distinguish two subcases. 

Case 2.1: Head(b) = xn. In this situation ZR' = ZL. To determine the part xR, qR, of OR' 
that is awake, we consider two further subcases. 

Case 2.1.1: qR' comes before p* on OR'. We can determine in O(1) time whether this 
case arises by comparing the position of PR' with respect to the tangent at p*. In this 
case, by Definition 17, b* is not awake in OR'. Note also that in this case XR, = YR. Now 
Lemma 16, part (2), tells us that the points xn, ( = YR ), qR', p*, and qR lie on a single arc 
(in 0 R). Consequently, the points that are awake in 0 R' form a single arc xR, qR, (=  YRqR'). 
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Therefore we restore Invariant 1 for pseudotriangle R' by initializing Awake[R'] as 

the empty queue, after which we enqueue a single atom, representing the arc XR'qR' on 
OR'. See lines 2-4 of the pseudocode below. 

Case 2.1.2: qR' comes after p* on OR'. In this case qR' lies on the segment q*qL of OL. 
As explained in Section 3.4.3 this segment is represented by AwakeMax[b]. So we start a 
reverse walk along OL, starting at qL, until we have found qR'. We know when to stop by 
considering the position of  Head(b'R) with respect to the tangent line in the current point 
of OL. This walk can be implemented by first setting gwake[R'] +- AwakeMax[L], 
and subsequently dequeuing atoms from the tail of Awake[R']; see lines 6-10 of the 
pseudocode below. When qR' is found, the queue Awake[R'] represents the segment 
q*qR'. The construction of Awake[R'] is completed by enqueuing an atom representing 
b* at the head, followed by enqueuing an atom representing the arc XR, p* at the head 
in case xR, # p*, see lines 14-19 of the pseudocode. (The fact that, in the latter case, 
xR, p* is a single arc follows from Lemma 16, part (2), applied to R'.) 

Case 2.2: Head(b) # XR. In this case Head(b'R) = XR. Furthermore PR' = qR' = XR, SO: 

�9 The part YR'ZR' ( = yR'qR' ) of OR' is a single arc; see again Lemma 16, part (2), 
applied to R'. 

�9 All points on OR' between XR, ( = YR or p*) and ZR, ( = XR ) are awake in OR'. 
Consequently, no point is asleep in OR'. 

Since in this case qL = zL (= Head(b)),  we see that AwakeMax[L] represents the part 
of OR' between q* and Zz; see line 14 in the algorithm of Section 3.4.3. So after setting 
Awake[R'] to AwakeMax[L], and adjusting the endpoint of the last atom in this queue 
from qL (= zL) to xR (= ZR, = qR'), we establish that Awake[R'] represents the part of 
OR' between q* and ZR,. See lines 6 and 11-13 of the pseudocode below. 

As in case 2.1.2, we now enqueue b* at the head of Awake[R']. In case xR, = p*, this 
completes the construction of Awake[R']. In case xR, # p* we complete the restoration 
of Invariant 1 by enqueuing the single arc xR, p* (= YRP*). 

We summarize the preceding discussion in the following piece of pseudocode: 

Algorithm CONSTRUCTION OF Awake[R']: CASE 2 

1 if  Head(b) = xR and qn' comes before p* on OR' then Comment: Case 2.1.1 
2 Awake[R'] +- 
3 enqueue atom representing arc XR'qR' onto Awake[R'] 
4 Comment: Invariant 1 holds for R' 
5 else Comment: case 2.1.2 or case 2.2 
6 Awake[R'] +- AwakeMax[L] 
7 if  Head(b) = XR then Comment: case 2.1.2 
8 while tail atom of Awake[R'] does not contain qR' do 
9 dequeue tail atom of Awake[R'] endwhile 

10 set terminal point of tail atom in Awake[R'] to qR' 
11 else Comment: case 2.2 
12 set terminal point of tail atom in Awake[R'] to XR (= qR') 
13 endif Comment: Awake[R'] represents q*qR' 
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14 enqueue b* at the head of Awake[R'] 
15 ifxR, # p* then Comment: xR, = YR; see Table 2 
16 enqueue arc xR, p* at head of Awake[R'] 
17 else Comment: xR, = p* 
18 skip (do nothing) 
19 endif Comment: Invariant 1 holds for R' 
20 endif 

It remains to describe the construction of As 1 e ep[R' ] ,  namely the sequence of points of 
8R' between YR' and zR, that are not awake. 

As we have observed above, in case 2.2 none of the points of 8R'  is asleep, so we 
establish Invariant 2 for R' by setting Asleep[R ' ]  to 0. So consider case 2.1, namely 
Head(b) = xR. Then zR, = zL, and all points that are asleep in OR' belong to 8L. 

If qL does not belong to the part of 8L between YL and zL, then yR'ZR' = yLZL, and 

qR' ~ yLZL, SO we restore Invariant 2 for R' by setting As leep[R ' ]  ~-- As leep[L] .  If, 
on the other hand, qL �9 YLZL, then qL is- -by definition--the initial point of the first 
atom of Asleep[L] .  In this case Lemma 16, part (2), applied to the pseudotriangle L, 
tells us that YLqL is a single arc, so we can detect in O (1) time whether qR' lies between 
YL and zL (since, in that case, it lies on the arc YLqL of OL). IfqR, �9 ycZL, then the first 
atom of Asleep[R ' ]  is the union of the arc qR'qL and the arc that is the first atom of 
the queue Asleep[L] .  In other words, after setting As leep[R ' ]  ~ Asleep[L] ,  we can 
establish Invariant 2 for R' in this case by replacing the initial point (namely qL) of the 
first atom in Asleep[R ' ]  with qR'. See line 5 of the pseudocode below. If qR' ~ YLZL, 

we replace the initial point of the first atom of Asleep[R ' ]  with YR', which is either q* 
or YL. See lines 6-8 in the pseudocode. 

The preceding discussion is summarized in the following code fragment. 

Algorithm CONSTRUCTION OF As l eep[R']: CASE 2 

1 i f  Head(b) = xR then Comment: case 2.1, zR, = zL 
2 As leep[R ' ]  +-- As leep[L]  
3 i fqL  �9 YLZL then 
4 ifqR, �9 YLZL then 
5 set initial point of first atom in As leep[R ' ]  to qR' 
6 elseif q* �9 YLZL then 
7 set initial point of first atom in As leep[R ' ]  to q* 
8 else set initial point of first atom in As 1 eep[R'] tO YL 
9 endif 

10 else skip (do nothing) 
11 endif 
12 else Comment: case 2.2, ze, = xR = qR' 

13 Asleep[R'] +- 0 
14 endif Comment: Invariant 2 holds for R' 

Case 3: R' = Rtri(b*) and b* = min BR,. In this case R' is the right pseudotriangle of 
b*, so p* is the basepoint of R', and qR' = P*. Again we refer to Fig. 16, case (3). Hence 
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no point of OR' is asleep, so we set Asleep[R']  ~ 0. The construction of Awake[R'] 
from AS i eep[L] is similar to the construction of AS i eep[R'] from AS i eep[L] in case 
2.1. More precisely, if qL ~- yLZL, we have xn, yn, = YLZL, which is represented by 
Asleep[L] .  So set Awake[R'] *-- Asleep[L]  in this case. 

If qL �9 YLZL, we also set Awake[R'] *- Asleep[L] ,  but we have to change the 
initial point of the first arc from qL into xn,, which is either q* (if q* �9 YLZL) or YL (if 
q* ~ YLZL), according to Table 2. In both cases we finally enqueue the arc zLp* = yn, qn, 
at the tail of Awake[R']. 

3.4.5. Amortized Complexity. As for the amortized time complexity, observe that the 
initial collection of splittable queues--one for each pseudotriangle in the greedy pseudo- 
triangulation we start out with--can be computed in O (n log n) time (for instance, simply 
by enqueuing the bitangents and arcs that are awake in the boundary of each pseudotrian- 
gle). This amounts to O (n) enqueue operations. As we have just indicated, doing all flips 
and maintaining the collection of queues Awake[T] and As i eep[T], T �9 G (I (0)), cost 
O (k) further enqueue, dequeue, and split operations. Note that, according to Lemma 3, 
at any time the storage needed for all these queues is O(n). Together with Lemma 18 
this observation implies our main result, namely Theorem 1. 

Although we have not checked all the details yet, we are convinced that this algorithm 
also applies to the case of obstacles of nonconstant complexity. More precisely, consider 
n convex objects consisting of a total of m pieces of constant complexity. Then the algo- 
rithm computes the visibility graph of this collection in time O (k + m log n) and space 
O (m). In this case the number of enqueue operations in a single flip has an upper bound 
proportional to the complexity of the face of the visibility complex whose minimal ver- 
tex corresponds to the bitangent being flipped. Then the amortized complexity analysis 
of the algorithm can be done conveniently in terms of the combinatorial complexity, 
namely O (k + m), of the visibility complex. 

4. Condusion 

In this paper we have presented an optimal time and linear space algorithm for con- 
structing the visibility graph of a set of pairwise disjoint convex obstacles of constant 
complexity in the plane. Our algorithm realizes a topological sweep of the visibility com- 
plex and is based on new combinatorial properties of visibility graphs/complexes. As 
indicated in Section 3.4.5, we are convinced that the algorithm also works for obstacles 
of nonconstant complexity. 

This work raises two questions that we intend to study in the future. The first question 
is whether our method can be extented to nonconvex obstacles--it seems clear that the 
method can be extented to the computation of the visibility graph of the collection of 
relative convex hulls of nonconvex obstacles (mainly because, in that case, free space 
remains decomposable into pseudotriangles); however, the general case remains elu- 
sive. The second question is whether our algorithm can be turned into an algorithmic 
characterization of (some abstraction of) visibility graphs--as, for example, the greedy 
algorithm characterizes the independence set systems which are matroids (see [17]). 
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Appendix A. Poset Terminology 

In this section we review poset terminology, that we borrow from the book of Stanley [28, 
Chapter 3] and the paper of  McMullen [19]. 

A partially ordered set P (or poset, for short) is a set, together with a partial order 
relation denoted b y .  A subposet of P is a subset of P with the induced order. A special 
type of  subposet is the interval Ix, y] = {z E P I x _ z ___ y}. A poser P is called a 
locally finite poset if every interval of  P is finite. If  x, y e P,  then we say that y covers 
x if x -< y (i.e., x _ y and x ~ y) and if no element z E P satisfies x -< z -< y. The 
Hasse diagram of a poset is the graph whose vertices are the elements of  P and whose 
edges are the cover relations. 

A chain is a poset in which any two elements are comparable. A subset C of  a poset 
P is called a chain if C is a chain when regarded as a subposet of  P.  The chain C of 
P is saturated (or unrefinable) if there does not exist z E P \ C  such that x -< z -< y for 
some x, y ~ C and such that C U {z} is a chain. An antichain is a subset A of  a poset 
P such that any two distinct elements of  A are incomparable. A filter is a subset I of  
P such that i f x  E I and x ~ y, then y E I. A proper filter of  a poset (X,-<) is a filter 
which is a nonempty proper subset of  X. 

An abstract n-polytope is a poset (P,  _) ,  with elements called faces, which satisfies 
the following properties: 

1. P has a unique minimal face F-1 and a unique maximal face Fn. 
2. The flags (i.e., maximal chains) of  P all contain exactly n + 2 faces. Therefore P 

has a strictly monotone rank function with range { - 1 ,  0 . . . . .  n}. The elements of 
rank i are called the/-faces of  P,  or vertices, edges, and facets of P if i = 0, 1, 
or n - 1, respectively. 

3. P is strongly flag-connected, meaning that any two flags dp and qJ of  P can be 
joined by a sequence of  flags �9 = qb0, q~l . . . . .  ~ = qJ, which are such that t~ i_  1 
a n d  CI) i are adjacent (differ by just one face), and such that �9 D qJ C (1) i for each i. 

4. Finally, if F and G are an (i - 1)-face and an (i + 1)-face with F -< G, then there 
are exactly two/-faces H such that F -< H -< G. (Diamond Property.) 

For a face F the interval [F, Fn] is called the coface of P at F,  or the vertex-figure at F,  
if F is a vertex. 

Appendix B. Splittable Queues 

Here we sketch a proof of  Lemma 18. It is well known that finger trees suit our purpose 
(see, e.g., [13]), but even the much simpler red-black trees with father pointers will do. In 
this way we avoid the use of level links, which are rather complicated to maintain. Note 
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in passing that the randomized search trees of Aragon and Seidel [3] can also be used to 
implement splittable queues, resulting in the same time bounds with high probability. 

We augment a red-black tree with two special pointers, to the maximal and minimal 
atoms in the tree. Atoms (arcs) are stored in a leaf-oriented fashion; they are represented 
by their endpoints and the tangent lines at their endpoints. In general, the same repre- 
sentation can be used to represent convex chains that are unions of atoms of the type just 
described. So we store a chain in a red-black tree in the following way: (i) store the atoms 
at the leaf; (ii) at an internal node, store the convex chain that is the union of all atoms in the 
subtree rooted at this leaf. This information is sufficient to guide the search for the atom at 
which we want to split the queue (chain), since the basic operation is to determine whether 
from a given point there is a tangent line to the convex chain. Furthermore, the informa- 
tion at internal nodes can be maintained after 1 (1, and a constant number of rotations). 

The amortized O(1) cost of the enqueue and dequeue operation follows from a stan- 
dard argument, since it is well known that the amortized rebalancing cost of an insert 
operation on a red-black tree, i.e., the time spent after locating the father of the new node, 
is O(1) (see, e.g., Chapter III of [20] or Chapter 3.3 of [21]). Since upon enqueueing 
a new atom at the head or the tail of the list, the father of the new atom is either the 
maximal or the minimal node, it can be found in O(1) time. It is similarly shown that 
dequeuing takes O(1) amortized time. 

A similar argument holds for the split operation. Suppose we search for an atom x of 
rank d. By synchronously walking upward along the left and right ridge of the red-black 
tree, starting from the minimal and maximal node, we find the root of a subtree of height 
O (log min(d, n - d)) containing the atom x. Descending in this subtree, toward the leaf 
representing the atomx, takes O (log min(d, n - d ) )  time, after which we can do the actual 
split in O (log min(d, n - d)) time. The amortized time for 1 is also O (log min(d, n - d)). 

To prove that a sequence of O(m) operations on n initially empty splittable queues 
can be performed in O(m) time, we provide each queue with r - log r credits, where r 
is the size (number of atoms) of the queue (we consider logarithms in base 2); see [5] for 
a similar analysis. Suppose that, due to a split operation, a queue of size r is split into 
two queues of size rl and r2, where rl > r2. To restore the credit invafiant we deposit 
one additional credit for this split operation. Then the credits rl - log rl and r2 - log r2 
for the new queues are available, since 2r1 > r implies that 

r -  logr  + 1 > (rl - logr~) + ( r 2 -  logr2) + logr2 .  

Restoring the credit invariants for the collection of queues upon an enqueue or dequeue 
operation is similar. 
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