9 research outputs found

    Kebijakan Penanggulangan Bencana Berbasis Komunitas: Kampung Siaga Bencana dan Desa/kelurahan Tangguh Bencana

    Full text link
    Bencana alam sering terjadi di Indonesia, Kementerian Sosial membuat kebijakan programkampung siaga bencana dan Badan Nasional Penanggulangan Bencana membuat kebijakan programdesa/kelurahan tangguh bencana. Keduanya, merupakan kebijakan pemerintah dalam penanggulanganbencana berbasis komunitas. Sehingga terkesan terjadi tumpang tindih program. Oleh karena itu penelitianini membandingkan kebijakan program kampung siaga bencana dan desa tangguh bencana dilihat darilembaga pembuat kebijakan, tujuan, konsep desa/kelurahan dan kampung, organisasi pelaksana, pelaksana,mitra organisasi, konteks ekologikal, protokol intervensi, populasi target.Hasil penelitian menunjukkan berbeda dengan Badan Nasional Penanggulangan Bencana,Kementerian Sosial RI tidak hanya sebagai pembuat kebijakan akan tetapi juga melaksanakan fasilitasilangsung pembentukan kelembagaan kampung siaga bencana. Konsep kampung pada kampung siagabencana cenderung pada merek program bukan kampung sebagai wilayah sedangkan pada desa/kelurahan merupakan konsep kewilayahan desa/kelurahan itu sendiri. Tujuan dari kampung siaga bencanacenderung lebih kompleks yaitu memberikan pemahaman dan kesadaran masyarakat, membentuk jejaringdan memperkuat interaksi sosial, mengorganisasikan, menjamin kesinambungan, mengoptimalkan potensidan sumber daya sedangkan pada desa/kelurahan tangguh bencana lebih cenderung sebagai upayapeningkatan penanggulangan berbasis komunita

    Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Enantiopure Osmium(II) Pybox Complexes

    No full text
    The complexes <i>trans</i>-[OsCl<sub>2</sub>(L)­{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}] ((<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox = 2,6-bis­[4â€Č-(<i>S</i>)-isopropyloxazolin-2â€Č-yl]­pyridine, L = P­(OMe)<sub>3</sub> (<b>1a</b>), P­(OEt)<sub>3</sub> (<b>2a</b>), P­(O<sup><i>i</i></sup>Pr)<sub>3</sub> (<b>3a</b>), P­(OPh)<sub>3</sub> (<b>4a</b>), and <i>cis</i>-[OsCl<sub>2</sub>(L)­{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}] (L = PPh<sub>3</sub> (<b>5a</b>), P<sup><i>i</i></sup>Pr<sub>3</sub> (<b>6a</b>), and PCy<sub>3</sub> (<b>7a</b>)) have been synthesized from the complex <i>trans</i>-[OsCl<sub>2</sub>(η<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)­{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}] via substitution of ethylene by phosphites and phosphines, respectively, under toluene reflux conditions. On the other hand, the synthesis of the complexes <i>trans</i>-[OsCl<sub>2</sub>(L)­{(<i>R</i>,<i>R</i>)-Ph-pybox}] (L = P­(OMe)<sub>3</sub> (<b>1b</b>) and <i>cis</i>-[OsCl<sub>2</sub>(L)­{(<i>R</i>,<i>R</i>)-Ph-pybox}] (L = PPh<sub>3</sub> (<b>5b</b>), P<sup><i>i</i></sup>Pr<sub>3</sub> (<b>6b</b>), and PCy<sub>3</sub> (<b>7b</b>)) has been achieved from the complex <i>trans</i>-[OsCl<sub>2</sub>(η<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)­{(<i>R</i>,<i>R</i>)-Ph-pybox}] ((<i>R</i>,<i>R</i>)-Ph-pybox = 2,6-bis­[4â€Č-(<i>R</i>)-phenyloxazolin-2â€Č-yl]­pyridine under microwave irradiation. Complexes <b>1a</b>–<b>6a</b>, <b>1b</b>, <b>5b</b>, and <b>6b</b> have been assayed as catalysts for the asymmetric transfer hydrogenation (ATH) of ketones. Among the catalysts tested, the <sup><i>i</i></sup>Pr-pybox complexes <i>trans</i>-[OsCl<sub>2</sub>(L)­{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}] (L = P­(OMe)<sub>3</sub> (<b>1a</b>), P­(OEt)<sub>3</sub> (<b>2a</b>), P­(O<sup><i>i</i></sup>Pr)<sub>3</sub> (<b>3a</b>), P­(OPh)<sub>3</sub> (<b>4a</b>)) have proven to be the most active catalysts for the reduction of a variety of aromatic ketones as nearly complete conversion and high enantioselectivity (up to 94%) are reached

    Ruthenium-Mediated Cyclometalation Reactions of Allene and Allylphosphine CC Bonds: Synthesis of Îș(<i>P</i>),η<sup>4</sup>-(Hexa-2,5-dien-1-yl)diphenylphosphine–Ruthenium(II) Complexes

    No full text
    The cyclopentadienyl-containing complex [Ru(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(MeCN){Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-Ph<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}][PF<sub>6</sub>] (<b>1</b>) reacts with allenes, giving regioselectively the η<sup>2</sup>-allene complexes [Ru(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(MeCN){Îș(<i>P</i>)-Ph<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}(η<sup>2</sup>-CH<sub>2</sub>CCR<sup>1</sup>R<sup>2</sup>)][PF<sub>6</sub>] [R<sup>1</sup> = R<sup>2</sup> = Me (<b>3</b>); R<sup>1</sup> = H, R<sup>2</sup> = Ph (<b>4</b>); R<sup>1</sup>R<sup>2</sup> = −(CH<sub>2</sub>)<sub>5</sub>– (<b>5</b>)]. On the other hand, the reaction of the pentamethylcyclopentadienyl-containing complex [Ru(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)(MeCN){Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-Ph<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}][OTf] (<b>2</b>) with allenes yields regio- and stereoselectively the complexes [Ru(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>){Îș(<i>P</i>),η<sup>4</sup>-Ph<sub>2</sub>PCH<sub>2</sub>CHCHC(R<sup>1</sup>R<sup>2</sup>)CHCH<sub>2</sub>}][OTf] [R<sup>1</sup> = R<sup>2</sup> = Me (<b>6</b>); R<sup>1</sup> = H, R<sup>2</sup> = Ph (<b>7</b>); R<sup>1</sup>R<sup>2</sup> = −(CH<sub>2</sub>)<sub>5</sub>– (<b>8</b>)] via the intermolecular coupling of allene and allyldiphenylphosphine ligands. The intermediate complex [Ru(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)(MeCN){Îș(<i>P</i>)-Ph<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}{η<sup>2</sup>-CH<sub>2</sub>CCMe<sub>2</sub>}][OTf] (<b>9</b>) has been spectroscopically characterized. The structure of complex [Ru(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>){Îș(<i>P</i>),η<sup>4</sup>-Ph<sub>2</sub>PCH<sub>2</sub>CHCHC(Me)<sub>2</sub>CHCH<sub>2</sub>}][{3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>}<sub>4</sub>B] (<b>6a</b>) has been resolved by X-ray diffraction analysis

    Multiple Carbon–Carbon and Carbon–Metal Bond Formation from an Iridium-pybox Complex and Electron-Poor Terminal Alkynes: Synthesis of Iridium Complexes with a Novel Îș<sup>4</sup>N,N,N,C Tetradentate Ligand

    No full text
    The reaction of the complex [Ir­(η<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)­{Îș<sup>3</sup><i>N</i>,<i>N</i>,<i>N</i>-(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox)}]­[PF<sub>6</sub>] (<b>1</b>) with methyl propynoate in acetonitrile yields the new complex <b>2</b> with complete selectivity. In the presence of NaCl, the reaction of <b>1</b> with propynoate esters in acetonitrile affords complexes <b>3a</b>,<b>b</b>. The addition of methanol to complex <b>3a</b> affords complex <b>4</b>, whose structure has been determined by X-ray diffraction analysis

    Nucleophilic Additions to Allenylidene Ruthenium Complexes

    No full text
    Allenylidene complexes [Ru­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(CCCPh<sub>2</sub>)­{P­(OR)<sub>3</sub>}­(PPh<sub>3</sub>)]­[PF<sub>6</sub>] (R = Et (<b>1</b>), Me (<b>2</b>)) have been synthesized by the reaction of the complexes [Ru­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­Cl­{P­(OR)<sub>3</sub>}­(PPh<sub>3</sub>)] with 1,1-diphenyl-2-propyn-1-ol in the presence of NaPF<sub>6</sub>. Addition of different nucleophiles to complex <b>1</b> allows the synthesis of new allenyl or alkynyl ruthenium complexes depending on the regiochemistry of the reaction. Unexpected complexes [Ru­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­{Îș<sup>3</sup>(<i>C,C,C</i>)-C­(R<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>)CCPh<sub>2</sub>}­{P­(OEt)<sub>3</sub>}]­[PF<sub>6</sub>] (R = <i><sup>i</sup></i>Pr (<b>9a</b>), Ph (<b>9b</b>)), containing an unusual Îș<sup>3</sup>(<i>C,C,C</i>)<i>-</i>ligand have been obtained from the reaction of the allenylidene complex <b>1</b> with alkenylphosphane Ph<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub> (ADPP) or <i><sup>i</sup></i>Pr<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub> (ADIP). The formation of these complexes is proposed to proceed through an intermediate, [Ru­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(CCCPh<sub>2</sub>)­{P­(OR)<sub>3</sub>}­{Îș<sup>1</sup>(<i>P</i>)-R<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}]­[PF<sub>6</sub>]

    Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)‑Allylphosphane Iridium(III) and Rhodium(III) Complexes: Preparation and Reactivity toward Nucleophilic Reagents

    No full text
    The first allylphosphane iridium complexes [IrCl<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș­(<i>P</i>)-R<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}] (R = <i>i</i>Pr (<b>1a</b>), Ph (<b>1b</b>)) have been synthesized by the reaction of the dimeric complex [IrCl­(ÎŒ-Cl)­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)]<sub>2</sub> with allyldiisopropylphosphane (ADIP) and allyldiphenylphosphane (ADPP), respectively. The cationic complex [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}]<sup>+</sup> (<b>3</b><sup><b>+</b></sup>) has been prepared by the reaction of complex <b>1a</b> with NaX (X = BPh<sub>4</sub>, PF<sub>6</sub>) in dichloromethane. The complex <b>3<sup>+</sup></b> reacts with phosphanes and alkanethiolates to give the uncommon cationic complexes [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>2</sup>(<i>P</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH­(PR<sub>2</sub>Râ€Č)­CH<sub>2</sub>}]<sup>+</sup> (<b>5</b><sup><b>+</b></sup>–<b>7</b><sup>+</sup>) and IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C,S</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH­(SR)­CH<sub>2</sub>}]<sup>+</sup> (<b>13</b><sup><b>+</b></sup> and <b>14</b><sup><b>+</b></sup>) by chemo- and regioselective addition of the nucleophiles to the π-olefin system. The reaction of <b>1a</b> with LiBHEt<sub>3</sub> gives the neutral complex [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>2</sup>(<i>P</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>}] (<b>10</b>). For comparative purposes, the synthesis of the complex [RhCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}]<sup>+</sup> (<b>4</b><sup><b>+</b></sup>) and its reactivity with phosphanes, hydride, and thiolates has been also assayed

    Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)‑Allylphosphane Iridium(III) and Rhodium(III) Complexes: Preparation and Reactivity toward Nucleophilic Reagents

    No full text
    The first allylphosphane iridium complexes [IrCl<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș­(<i>P</i>)-R<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}] (R = <i>i</i>Pr (<b>1a</b>), Ph (<b>1b</b>)) have been synthesized by the reaction of the dimeric complex [IrCl­(ÎŒ-Cl)­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)]<sub>2</sub> with allyldiisopropylphosphane (ADIP) and allyldiphenylphosphane (ADPP), respectively. The cationic complex [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}]<sup>+</sup> (<b>3</b><sup><b>+</b></sup>) has been prepared by the reaction of complex <b>1a</b> with NaX (X = BPh<sub>4</sub>, PF<sub>6</sub>) in dichloromethane. The complex <b>3<sup>+</sup></b> reacts with phosphanes and alkanethiolates to give the uncommon cationic complexes [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>2</sup>(<i>P</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH­(PR<sub>2</sub>Râ€Č)­CH<sub>2</sub>}]<sup>+</sup> (<b>5</b><sup><b>+</b></sup>–<b>7</b><sup>+</sup>) and IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C,S</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH­(SR)­CH<sub>2</sub>}]<sup>+</sup> (<b>13</b><sup><b>+</b></sup> and <b>14</b><sup><b>+</b></sup>) by chemo- and regioselective addition of the nucleophiles to the π-olefin system. The reaction of <b>1a</b> with LiBHEt<sub>3</sub> gives the neutral complex [IrCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>2</sup>(<i>P</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>}] (<b>10</b>). For comparative purposes, the synthesis of the complex [RhCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>3</sup>(<i>P</i>,<i>C</i>,<i>C</i>)-<i>i</i>Pr<sub>2</sub>PCH<sub>2</sub>CHCH<sub>2</sub>}]<sup>+</sup> (<b>4</b><sup><b>+</b></sup>) and its reactivity with phosphanes, hydride, and thiolates has been also assayed

    Intramolecular C–C Coupling Reactions of Alkynyl, Vinylidene, and Alkenylphosphane Ligands in Rhodium(III) Complexes

    Get PDF
    Electrophilic attack with methyl trifluoro­methane­sulfonate or tetrafluoro­boric acid, to new alkynyl rhodium complexes containing alkenylphosphanes, leads to butenynyl coupling products or to the unprecedented rhodaphosphacycle complexes [Rh­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­{Îș<sup>4</sup>-(<i>P</i>,<i>C</i>,<i>C</i>,<i>C</i>)-<i><sup>i</sup></i>Pr<sub>2</sub>PCH<sub>2</sub>C­(CH<sub>2</sub>)­C­(CH<sub>2</sub>R)­CC­(R)}]­[BF<sub>4</sub>] (R = Ph (<b>11a</b>), <i>p</i>-tol (<b>11b</b>)). These complexes <b>11a</b>,<b>b</b> can be explained as a result of the coupling of three organic fragments in the molecule, the alkynyl, the vinylidene, generated <i>in situ</i> by reaction with HBF<sub>4</sub> (<b>A</b>), and the C–C double bond from the alkenylphosphane. DFT computational studies on the formation of complex <b>11a</b> suggest the [2 + 2] intramolecular cycloaddition between the double bond of the allylphosphane and the Cα–CÎČ of the vinylidene <b>A</b> as the most plausible pathway for this reaction

    Synthesis of Silver(I) and Gold(I) Complexes Containing Enantiopure Pybox Ligands. First Assays on the Silver(I)-Catalyzed Asymmetric Addition of Alkynes to Imines

    No full text
    Dinuclear complexes [Ag<sub>2</sub>(CF<sub>3</sub>SO<sub>3</sub>)­{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}<sub>2</sub>]­[CF<sub>3</sub>SO<sub>3</sub>] (<b>1</b>), [Ag<sub>2</sub>(R-pybox)<sub>2</sub>]­[X]<sub>2</sub> [R-pybox = 2,6-bis­[4-(<i>S</i>)-isopropyloxazolin-2-yl]­pyridine (<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox and X = PF<sub>6</sub> (<b>2</b>) and BF<sub>4</sub> (<b>3</b>); R-pybox = 2,6-bis­[(3a<i>S</i>,8a<i>R</i>)-8,8a-dihydro-3a<i>H</i>-indeno­[1,2-<i>d</i>]­oxazol-2-yl]­pyridine (3a<i>S</i>,3aâ€Č<i>S</i>,8a<i>R</i>,8aâ€Č<i>R</i>)-indane-pybox and X = CF<sub>3</sub>SO<sub>3</sub> (<b>4</b>)], [Ag<sub>2</sub>{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}­{(3a<i>S</i>,3aâ€Č<i>S</i>,8a<i>R</i>,8aâ€Č<i>R</i>)-indane-pybox}]­[CF<sub>3</sub>SO<sub>3</sub>]<sub>2</sub> (<b>5</b>), and [Ag<sub>2</sub>(R-pybox)<sub>3</sub>]­[X]<sub>2</sub> [R-pybox = (3a<i>S</i>,3aâ€Č<i>S</i>,8a<i>R</i>,8aâ€Č<i>R</i>)-indane-pybox and X = CF<sub>3</sub>SO<sub>3</sub> (<b>10</b>), SF<sub>6</sub> (<b>11</b>), and PF<sub>6</sub> (<b>12</b>)] as well as mononuclear complexes [Ag­(R-pybox)<sub>2</sub>]­[X] [R-pybox = (<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox and X = SbF<sub>6</sub> (<b>6</b>), PF<sub>6</sub> (<b>7</b>), and BF<sub>4</sub> (<b>8</b>); R-pybox = (3a<i>S</i>,3aâ€Č<i>S</i>,8a<i>R</i>,8aâ€Č<i>R</i>)-indane-pybox) and X = BF<sub>4</sub> (<b>9</b>)] have been prepared by the reaction of the corresponding silver salts and pybox ligands using the appropriate molar ratio conditions. The first gold­(I)/pybox complex [Au<sub>6</sub>Cl<sub>4</sub>{(<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox}<sub>4</sub>]­[AuCl<sub>2</sub>]<sub>2</sub> (<b>13</b>) has been synthesized by the reaction of [AuCl­{S­(CH<sub>3</sub>)<sub>2</sub>}] and (<i>S</i>,<i>S</i>)-<sup><i>i</i></sup>Pr-pybox (1:1 molar ratio) in acetonitrile. The structures of the dinuclear (<b>1</b>, <b>4</b>, <b>5</b>, <b>10</b>, and <b>11</b>) and mononuclear (<b>6</b> and <b>9</b>) silver complexes and the hexanuclear gold complex <b>13</b> have been determined by single-crystal X-ray diffraction analysis. These studies have been complemented with a solution-state study by NMR spectroscopy, which included structure elucidation, variable-temperature measurements, and diffusion studies using diffusion-ordered spectroscopy (DOSY; for complexes <b>1</b>, <b>4</b>, <b>10</b>, and <b>12</b>). Complexes <b>1</b>, <b>2</b>, <b>4</b>, and <b>10</b> have been assayed as catalysts in the asymmetric addition of phenylacetylene to <i>N</i>-benzylideneaniline
    corecore