14,833 research outputs found

    Identification of a New Family of Enzymes with Potential \u3cem\u3eO\u3c/em\u3e-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria

    Get PDF
    Background: The metabolism of the rigid bacterial cell wall heteropolymer peptidoglycan is a dynamic process requiring continuous biosynthesis and maintenance involving the coordination of both lytic and synthetic enzymes. The O-acetylation of peptidoglycan has been proposed to provide one level of control on these activities as this modification inhibits the action of the major endogenous lytic enzymes, the lytic transglycosylases. The O-acetylation of peptidoglycan also inhibits the activity of the lysozymes which serve as the first line of defense of host cells against the invasion of bacterial pathogens. Despite this central importance, there is a dearth of information regarding peptidoglycan O-acetylation and nothing has previously been reported on its de-acetylation. Results: Homology searches of the genome databases have permitted this first report on the identification of a potential family of O-Acetylpeptidoglycan esterases (Ape). These proteins encoded in the genomes of a variety of both Gram-negative and Gram-positive bacteria, including a number of important human pathogens such as species of Neisseria, Helicobacter, Campylobacter, and Bacillus anthracis, have been organized into three families based on amino acid sequence similarities with family 1 being further divided into three sub-families. The genes encoding these proteins are shown to be clustered with Peptidoglycan O-acetyltransferases (Pat) and in some cases, together with other genes involved in cell wall metabolism. Representative bacteria that encode the Ape proteins were experimentally shown to produce O-acetylated peptidoglycan. Conclusion: The hypothetical proteins encoded by the pat and ape genes have been organized into families based on sequence similarities. The Pat proteins have sequence similarity to Pseudomonas aeruginosa AlgI, an integral membrane protein known to participate in the O-acetylation of the exopolysaccaride, alginate. As none of the bacteria that harbor the pat genes produce alginate, we propose that the Pat proteins serve to O-acetylate peptidoglycan which is known to be a maturation event occurring in the periplasm. The Ape sequences have amino acid sequence similarity to the CAZy CE 3 carbohydrate esterases, a family previously known to be composed of only O-acetylxylan esterases. They are predicted to contain the α/β hydrolase fold associated with the GDSL and TesA hydrolases and they possess the signature motifs associated with the catalytic residues of the CE3 esterases. Specific signature sequence motifs were identified for the Ape proteins which led to their organization into distinct families. We propose that by expressing both Pat and Ape enzymes, bacteria would be able to obtain a high level of localized control over the degradation of peptidoglycan through the attachment and removal of O-linked acetate. This would facilitate the efficient insertion of pores and flagella, localize spore formation, and control the level of general peptidoglycan turnover

    Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks

    Get PDF
    Background: The bacterium Coxiella burnetii is the etiological agent of Q fever and is mainly transmitted via inhalation of infectious aerosols. DNA of C. burnetii is frequently detected in ticks, but the role of ticks as vectors in the epidemiology of this agent is still controversial. In this study, Ixodes ricinus and Dermacentor marginatus adults as well as I. ricinus nymphs were fed on blood spiked with C. burnetii in order to study the fate of the bacterium within putative tick vectors. Methods: Blood-feeding experiments were performed in vitro in silicone-membrane based feeding units. The uptake, fecal excretion and transstadial transmission of C. burnetii was examined by quantitative real-time PCR as well as cultivation of feces and crushed tick filtrates in L-929 mouse fibroblast cells and cell-free culture medium. Results: Ticks successfully fed in the feeding system with engorgement rates ranging from 29% (D. marginatus) to 64% (I. ricinus adults). Coxiella burnetii DNA was detected in the feces of both tick species during and after feeding on blood containing 105 or 106 genomic equivalents per ml blood (GE/ml), but not when fed on blood containing only 104 GE/ml. Isolation and cultivation demonstrated the infectivity of C. burnetii in shed feces. In 25% of the I. ricinus nymphs feeding on inoculated blood, a transstadial transmission to the adult stage was detected. Females that molted from nymphs fed on inoculated blood excreted C. burnetii of up to 106 genomic equivalents per mg of feces. Conclusions: These findings show that transstadial transmission of C. burnetii occurs in I. ricinus and confirm that I. ricinus is a potential vector for Q fever. Transmission from both tick species might occur by inhalation of feces containing high amounts of viable C. burnetii rather than via tick bites

    Atmospheric transport and deposition of Indonesian volcanic emissions

    Get PDF
    International audienceA regional climate model has been used to study the transport and deposition of sulfur (SO2 and SO42-) and PbCl2 emissions from Indonesian volcanoes. The sensitivity of the atmospheric loss of these trace species to meteorological conditions and their solubility was examined. Two experiments were conducted: 1) volcanic sulfur released as primarily SO2 and subject to transport, deposition, and oxidation to SO42-; and 2) PbCl2 released as an infinitely soluble passive tracer subject to only transport and deposition. The first experiment was used to calculate SO2 loss rates from each active Indonesian volcano producing an annual mean loss rate for all volcanoes of 1.1×10-5 s-1, or an e-folding rate of approximately 1 day. SO2 loss rate was found to vary seasonally, be poorly correlated with wind speed, and uncorrelated with temperature or relative humidity. The variability of SO2 loss rates is found to be correlated with the variability of wind speeds, suggesting that it is much more difficult to establish a "typical'' SO2 loss rate for volcanoes that are exposed to changeable winds. Within an average distance of 70 km away from the active Indonesian volcanoes, 53% of SO2 loss is due to conversion to SO42-, 42% due to dry deposition, and 5% due to lateral transport away from the dominant direction of plume travel. The solubility of volcanic emissions in water is shown to influence their atmospheric transport and deposition. High concentrations of PbCl2 are predicted to be deposited near to the volcanoes while volcanic S travels further away until removal from the atmosphere primarily via the wet deposition of H2SO4. The ratio of the concentration of PbCl2 to SO2 is found to exponentially decay at increasing distance from the volcanoes. The more rapid removal of highly soluble species should be considered when observing SO2 in an aged plume and relating this concentration to other volcanic species. An assumption that the ratio between the concentrations of highly soluble volcanic compounds and SO2 within a plume is equal to that observed in fumarolic gases is reasonable at small distances from the volcanic vent, but will result in an underestimation of the emission flux of highly soluble species

    Magnetic field effects on spin relaxation in heterostructures

    Full text link
    Effect of magnetic field on electron spin relaxation in quantum wells is studied theoretically. We have shown that Larmor effect and cyclotron motion of carriers can either jointly suppress D'yakonov-Perel' spin relaxation or compensate each other. The spin relaxation rates tensor is derived for any given direction of the external field and arbitrary ratio of bulk and structural contributions to spin splitting. Our results are applied to the experiments on electron spin resonance in SiGe heterostructures, and enable us to extract spin splitting value for such quantum wells.Comment: 6 pages, 4 figure

    Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry

    Get PDF
    In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called D'yakonov-Perel' decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.Comment: 8 pages, 6 figure
    corecore