80 research outputs found

    Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications

    Get PDF
    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.PW Gold, MG Pavlatou, D Michelson, CM Mouro, MA Kling, M-L Wong, J Licinio and SA Goldstei

    Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies

    Get PDF
    Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio

    Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes

    No full text
    Exercise represents a physical stress that challenges homeostasis. In response to this Stressor, the autonomic nervous system and hypothalamus- pituitary-adrenal axis are known to react and participate in the maintenance of homeostasis and the development of physical fitness. This includes elevation of cortisol and catecholamines in plasma. However, physical conditioning is associated with a reduction in pituitary-adrenal activation in response to exercise. On the other hand, highly trained athletes exhibit chronic mild hypercortisolism at baseline that may be an adaptive change to chronic exercise. In addition the proinflammatory cytokine, IL-6 is also activated, probably via catecholamines. On the other hand, the stress of chronic exercise induces certain changes to the thyroid axis. Peripheral thyroid hormone metabolism suppression is observed, and the result is a hormonal status similar to that of euthyroid sick syndrome (ESS), with suppression OfT3 and elevation of rT3 plasma levels. One mechanism proposed involves exercise-activated pathways participating in the pathogenesis of ESS. This is realized through norepinephrine's activation of NF-κB. Neuroendocrine response to exercise stress involves activation of NF-κB resulting in inactivation of T 3-dependent 5′-deiodinase gene expression and enzyme activity. Thus, ESS is generated in the periphery. On the other hand, activation and nuclear translocation of NF-κB leads to increased transcription of proinflammatory genes responsible for the expression of proinflammatory cytokines such as TNF-α and IL-6. These cytokines could activate cortisol, which in turn inhibits NF-κB activation through IκB and finally shuts down this cycle. © Georg Thieme Verlag KG Stuttgart

    Pathological parainflammation and endoplasmic reticulum stress in depression: Potential translational targets through the CNS insulin, klotho and PPAR-gamma systems

    No full text
    Major depression and bipolar disorder are heterogeneous conditions in which there can be dysregulation of (1) the stress system response, (2) its capacity for counterregulation after danger has passed and (3) the phase in which damaging molecules generated by the stress response are effectively neutralized. The response to stress and depressed mood share common circuitries and mediators, and each sets into motion not only similar affective and cognitive changes, but also similar systemic manifestations. We focus here on two highly interrelated processes, parainflammation and endoplasmic reticulum (ER) stress, each of which can potentially interfere with all phases of a normal stress response in affective illness, including adaptive neuroplastic changes and the ability to generate neural stem cells. Parainflammation is an adaptive response of the innate immune system that occurs in the context of stressors to which we were not exposed during our early evolution, including overfeeding, underactivity, aging, artificial lighting and novel foodstuffs and drugs. We postulate that humans were not exposed through evolution to the current level of acute or chronic social stressors, and hence, that major depressive illness is associated with a parainflammatory state. ER stress refers to a complex program set into motion when the ER is challenged by the production or persistence of more proteins than it can effectively fold. If the ER response is overwhelmed, substantial amounts of calcium are released into the cytoplasm, leading to apoptosis. Parainflammation and ER stress generally occur simultaneously. We discuss three highly interrelated mediators that can effectively decrease parainflammation and ER stress, namely the central insulin, klotho and peroxisome proliferator-activated receptor-γ (PPAR-γ) systems and propose that these systems may represent conceptually novel therapeutic targets for the amelioration of the affective, cognitive and systemic manifestations of major depressive disorder.PW Gold, J Licinio and MG Pavlato

    A typology of chemistry classroom environments: Exploring the relationships between 10th grade students' perceptions, attitudes and gender

    No full text
    The present study was the first in Greece in which educational effectiveness theory constituted a knowledge base for investigating the impact of chemistry classroom environment in 10 Grade students' enjoyment of class. An interpretive heuristic schema was developed and utilised in order to incorporate two factors of teacher behaviour at classroom level, namely, 'content coverage' and 'cognitive teaching processes', with the patterns of a typology of classroom environments. The latter was drawn from data collected in Attica (a region in Greece) using a new and valid instrument, the How Chemistry Class is Working, while the Enjoyment of Chemistry Lessons scale was used to measure students' attitudes. A two-step cluster analysis revealed four patterns of the typology that were adaptable to the heuristic schema. The relationship between the patterns and students' gender, as well the variation in the level of students' enjoyment among the patterns, were explored. The traditional chemistry classroom environments were found to prevail and to be less enjoyable for the students, especially for the girls. It was found also that students enjoy chemistry lessons more when their goals are taken into account and they have an active role in learning process. © 2013 Springer Science+Business Media Dordrecht

    The interpretation of vibrational spectra of ionic melts

    No full text
    Computer simulations of the short-time, vibrational dynamics of the network-forming ionic melts, LaCl3 and ZnCl2, and of their mixtures with network-breaking alkali halides are described. In the mixtures, high frequency peaks in the vibrational density of states are shown to be describable in terms of the normal coordinates of vibration of transient molecular ion species, like LaCl63- and ZnCl42- . Novel simulation methods are presented which allow this association to be established. In the pure melts, the vibrational motions retain a strong aspect of this local polyhedral unit vibrational character, but the effects of network-induced coupling between the vibrations of different units become pronounced, particularly in ZnCl2. The calculated vibrational spectra are compared with extensive Raman data on these systems, and with infrared and neutron spectra in pure ZnCl2. For the mixtures, remarkably good agreement with experiment is found, confirming the high quality of the representation of the interionic interactions obtained with the polarizable ion model potentials used. For the melts, there are discrepancies between the peak frequencies observed in the vibrational DOS and the Raman spectra. These discrepancies are likely to be due to the network-induced couplings, whose effect on the Raman (and infrared) spectra is not fully included in the calculated DOS. © 1997 American Institute of Physics
    corecore