1,950 research outputs found

    Can Gravity Distinguish Between Dirac and Majorana Neutrinos?

    Get PDF
    We show that spin-gravity interaction can distinguish between Dirac and Majorana neutrino wave packets propagating in a Lense-Thirring background. Using time-independent perturbation theory and gravitational phase to generate a perturbation Hamiltonian with spin-gravity coupling, we show that the associated matrix element for the Majorana neutrino differs significantly from its Dirac counterpart. This difference can be demonstrated through significant gravitational corrections to the neutrino oscillation length for a two-flavour system, as shown explicitly for SN1987A.Comment: 4 pages, 2 figures; minor changes of text; typo corrected; accepted in Physical Review Letter

    Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy

    Get PDF
    Critical hydrometeorological events are generally triggered by heavy precipitation. In complex terrain, precipitation may be perturbed by the upslope raising of the incoming humid airflow, causing in some cases extreme rainfall. In this work, the application of LUME-Linear Upslope Model Extension-to a group of extreme events that occurred across mountainous areas of the Central Alps and Apennines in Italy is presented. Based on the previous version, the model has been "extended" in some aspects, proposing a methodology for physically estimating the time-delay coefficients as a function of precipitation efficiency. The outcomes of LUME are encouraging for the cases studied, revealing the intensification of precipitation due to the orographic effect. A comparison between the reference rain gauge data and the results of the simulations showed good agreement. Since extreme precipitation is expected to increase due to climate change, especially across the Mediterranean region, LUME represents an effective tool to investigate more closely how these extreme phenomena originate and evolve in mountainous areas that are subject to potential hydrometeorological risks

    A Comparison Between Machine Learning and Functional Geostatistics Approaches for Data-Driven Analyses of Sediment Transport in a Pre-Alpine Stream

    Get PDF
    The problem of providing data-driven models for sediment transport in a pre-Alpine stream in Italy is addressed. This study is based on a large set of measurements collected from real pebbles, traced along the stream through radio-frequency identification tags after precipitation events. Two classes of data-driven models based on machine learning and functional geostatistics approaches are proposed and evaluated to predict the probability of movement of single pebbles within the stream. The first class built upon gradient-boosting decision trees allows one to estimate the probability of movement of a pebble based on the pebbles' geometrical features, river flow rate, location, and subdomain types. The second class is built upon functional kriging, a recent geostatistical technique that allows one to predict a functional profile-that is, the movement probability of a pebble, as a function of the pebbles' geometrical features or the stream's flow rate-at unsampled locations in the study area. Although grounded in different perspectives, both models aim to account for two main sources of uncertainty, namely, (1) the complexity of a river's morphological structure and (2) the highly nonlinear dependence between probability of movement, pebble size and shape, and the stream's flow rate. The performance of the two methods is extensively compared in terms of classification accuracy. The analyses show that despite the different perspectives, the overall performance is adequate and consistent, which suggests that both approaches can provide modeling frameworks for sediment transport. These data-driven approaches are also compared with physics-based ones that are classically used in the hydrological literature. Finally, the use of the developed models in a bottom-up strategy, which starts with the prediction/classification of a single pebble and then integrates the results into a forecast of the grain-size distribution of mobilized sediments, is discussed

    Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads

    Get PDF
    Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a “pharmaceutical” POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. © 2017 Elsevier Lt

    Preliminary Feasibility Study of a Water Space Reactor with an Innovative Reactivity Control System

    Get PDF
    Power limitation represents a major issue within space applications aimed to human settlements on solar system planets. Among these planets, Mars is considered the most attractive because of its nearness to the Earth and the probable presence of minerals which can be used by the settlers to live off the land. In this frame, small size nuclear power plants can be an interesting solution to overcome the energy supply problem. This paper presents a preliminary feasibility study of a 100 kWe self-pressurized water space reactor, with the aim to design a system characterized by compactness, intrinsic safety and simplicity of the main reactor control components. To this end an innovative reactivity control system, based on the control of the primary coolant mass flow rate, was adopted. The introduction of this system in the reactor design required a comprehensive core neutronics analysis in order to properly quantify the effect of the coolant on the reactor behaviour also as a function of the fuel burn-up. Here only the main results of this analysis, concerning neutron flux profiles and multiplication factors, are discussed. Moreover preliminary results on long term reactivity control are presented, showing the possibility to operate the reactor for as long as 7 years with no need of human intervention

    Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study

    Get PDF
    Percutaneous radiofrequency thermal ablation (RTA) was reported as an effective tool for the management of thyroid nodules (TNs). The aim of this study was to investigate the effects of RTA and to establish whether they were treatment-related by comparison with a matched, untreated control group
    • …
    corecore