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Abstract: Critical hydrometeorological events are generally triggered by heavy precipitation. In
complex terrain, precipitation may be perturbed by the upslope raising of the incoming humid airflow,
causing in some cases extreme rainfall. In this work, the application of LUME—Linear Upslope Model
Extension—to a group of extreme events that occurred across mountainous areas of the Central Alps
and Apennines in Italy is presented. Based on the previous version, the model has been “extended”
in some aspects, proposing a methodology for physically estimating the time-delay coefficients as a
function of precipitation efficiency. The outcomes of LUME are encouraging for the cases studied,
revealing the intensification of precipitation due to the orographic effect. A comparison between the
reference rain gauge data and the results of the simulations showed good agreement. Since extreme
precipitation is expected to increase due to climate change, especially across the Mediterranean
region, LUME represents an effective tool to investigate more closely how these extreme phenomena
originate and evolve in mountainous areas that are subject to potential hydrometeorological risks.

Keywords: extreme rainfall; orographic effect; hydrometeorological hazard; hydrogeological hazard

1. Introduction

Flash floods, shallow landslides, and debris flows represent critical hydrogeological
hazards that can occur across mountainous areas [1–7]. They constitute a serious threat
to infrastructures, cities, and populations since they can evolve rapidly and can affect
entire catchments, causing extensive injuries and loss of lives [1,6,8,9]. From an emergency
management viewpoint, it is extremely important to try to predict or anticipate the possible
triggering of those threats to reduce the associated risk to the population [10–12]. One of
the main strategies to forecast these hydrogeological hazards involves the study of trig-
gering rainfall [1,3,4,13–15]. In fact, these severe hydrometeorological events are generally
associated with episodes of intense or extreme precipitation [1].

Extreme precipitation is defined as rainfall where large amounts of rain pour onto the
surface in a short amount of time [16–18]. At midlatitudes, extreme precipitations can be
triggered by atmospheric convection (thunderstorms), explosive cyclones, and atmospheric
rivers [1,17,19–25]. Here, the orographic effect may cause rainfall intensification [20,21,26],
acting as a precursor of convective storm formation, as reported by [21,27]. The rainfall
triggered by the orographic uplifting of a humid flow represents one of the most studied
mechanisms for precipitation generation [20–22,24–26]. The difficulties are essentially
related to the huge variability of the upslope mechanism that depends on the current local
state of the atmosphere and is also strongly connected to the local orography [20,28,29].

Analysis of severe orographic precipitation represents a research frontier that is now
further complicated by climate change [21,30–38]. The recent evidence from the IPCC
(Intergovernmental Panel on Climate Change) reports [39–41] suggests that extreme rainfall
is likely to increase, especially across those climate hot spots that represent areas across the
world that will experience the most severe effects of climate change [40–42]. The Italian
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Peninsula appears to be rather exposed to future climate effects [42–46], since the change is
expected across the Mediterranean region [41–43]. A warmer sea is likely to increase its
evaporation rate, refilling the warmer atmosphere with a large amount of water vapor that
can potentially increase the rainfall amounts [32,46,47]. This evidence comes from a climatic
model ensemble [48,49] that was simulated under different radiative scenarios [47,50]. Since
the Italian Peninsula is characterized by two important mountain ranges (the Alps and
the Apennines) surrounded by the Mediterranean Sea, extreme orographic precipitation
will likely occur more frequently in the near future, posing some challenges regarding
hydrogeological hazard prevention [32,35,51].

The orographic precipitation mechanism has been studied in the last decades, with
a range of different approaches proposed [16,20,29,52–57]. Some authors [53–55,58] have
considered an empirical–statistical interpretation and proposed methodologies to correlate
the recorded precipitation at rain gauges with the local elevation. In those cases, rainfall
amounts and elevation were treated as independent variables where a statistically signif-
icant correlation was researched. Among them, linear models for orographic control of
precipitation have been used by several authors to indirectly retrieve rainfall amounts
in ungauged mountainous areas [59–61]. These approaches have been implemented in
different ways, sometimes proposing simple rainfall–elevation regressions while, in other
cases, providing further detail with respect to the windward–leeward sides of the moun-
tain [61]. According to [53], for the investigated area of the Lombardy region (Italy), a
rather linear dependence of rainfall increasing with elevation was found when looking at
mean annual cumulates. Unfortunately, this relation cannot be generalized to all seasonal
periods and it is generally not valid during the summer when thunderstorm convection
generally occurs [53]. A confirmation was made by the authors of [54], who carried out
a study for the whole Italian Peninsula based on the Improved Italian—Rainfall Extreme
Dataset (I2-RED) [62]. These authors have reported that it is rather difficult to find a
generalized orographic precipitation gradient, although their analysis has not given any
statistical evidence of a correlation between rainfall and elevation for the Italian Peninsula
considering extreme rainfall events.

Since the mechanism of orographic precipitation cannot always be explained using a
simple linear regression with elevation, more sophisticated semi-empirical models such as
the Parameter Elevation Regressions on Independent Slopes Model (PRISM) [52,58] and
the STOchastic Rainfall Model (STORM) [55,63] were recently proposed. The PRISM is
based on a weighted climate–elevation regression function that acknowledges the domi-
nant influence of elevation on precipitation. Weights are assigned at each meteorological
station taking into account not only elevation but also other physiographical factors, such
as topographic exposure or coastal proximity, which affect the climate at a variety of scales.
The PRISM was widely tested all over the world for other meteorological parameters such
as temperature, obtaining positive responses from the scientific community for climatic
data interpretation [64], but its performance was not considered sufficiently accurate for
interpreting localized extreme rainfall events [65]. The STORM represents a rainfall gen-
erator model that was implemented to simulate event-based convective rainfall patterns
across a watershed [63]. This instrument is rather powerful for creating synthetic but
realistic rainfall: based on probability density functions (PDFs) of the key variables that
characterize the precipitation regime of an area, the Monte Carlo simulation allows one to
re-create extreme precipitation that may occur within a certain return period (RP). The main
drawback of this method lies in the consistent number of rain gauge data series that are
necessary to retrieve the PDFs for the investigated area. Another weak point has been iden-
tified in the poor empirical description of the orographic influence on rainfall distribution
that, according to the authors [63], should be improved. Due to their statistical–empirical
nature, PRISM and STORM may over-simplify the orographic mechanism, neglecting the
microphysical description of the rainfall generation processes that depend not only on
orographic interaction but also on the current atmospheric conditions [53,58,66]. According
to [16,20,21,52,67], the linear regression of precipitation with orography is only sufficiently
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accurate for a climatic purpose but could be rather misleading for interpreting a single
extreme rainfall event.

On the other hand, numerical Local Area Models (LAMs) such as Weather Research
and Forecasting (WRF) [68] or the Consortium for Small-scale Modeling (COSMO) [69]
undoubtedly have the advantage of simulating consistently the dynamics of the atmosphere,
addressing the orographic precipitation generation mechanisms more correctly [17,19].
LAMs are generally considered a valuable tool for meteorological nowcasting and are a
powerful instrument for alerting [12,16,17,70]. In the recent past, extensive benchmarks
have been carried out by several authors to assess the performance of LAMs and WRF
to simulate orographic precipitation [71–75]. The main outcomes of these studies have
highlighted several issues that still affect these models: strong sensitivity to microphysical
parameterization [72,75,76], dependence on domain sub-grid resolution and orography
discretization [71,72], dependence on convection triggering function [77,78], and model
initialization [17,29,73,79]. In this regard, the usability of the LAMs model is not trivial due
to their complexity that affects both their implementation (code, update and run) but also
the interpretation of the output data [17,75,80].

LAM outputs may be affected by large uncertainties since they are a product of a
model simulation that could be varied sensibly in the function of the initial conditions
of the atmospheric state variable [17,19,68,73–75,79,81–83]. Their affordability sometimes
is less reliable than the ground-based rain gauge records, especially if intense events are
expected [16,75]. In this regard, LAM simulations may be corrected “on the flight” if other
data are assimilated from other sources during the model runs [79,81,84–86]. One of the
most effective is the inclusion of meteorological radar images that can scan with a good
temporal (~5 min) and spatial (~1 km) resolution a large portion of the sky and detect the
formation of extreme precipitation, especially the convective ones [84,87,88]. Furthermore,
geostationary satellites are especially helpful for detecting large precipitation systems
such as incoming atmospheric rivers and explosive cyclone formations that may perturb
rainfall distribution at a regional scale [17,85,86,89–91]. Nevertheless, these correction
techniques may fail sometimes. Meteorological radar cannot work properly over orographic
complex environments if the signal is shaded by mountain peaks, while the rainfall rate
retrieved analytically from the cloud’s reflectivity may result in some errors under certain
circumstances [17,87,88] leading to under- or overestimation of the rainfall rates. The
satellite data have the problem of spatial resolution potentially being generally too coarse
for detecting extreme precipitation structures that develop at local scales, and they can give
only a 2D description of the observed phenomena [17,88,89].

Based on these premises, from an engineering and operative viewpoint, the definition
of a model or a tool that can reveal the essential mechanisms of orographic precipitation
enhancement is still a challenge. A new approach should avoid the approximations of the
empirical–statistical models and also the complexities of LAM implementation. From the
hydrogeological point of view, it is of paramount importance to try to detect the location
where during a certain event, extreme precipitation rainfall amounts have been recorded
explaining the role of the orographic upslope mechanism in their intensification. For
these reasons, in this work, we present a revision of the Linear Upslope Model (LUM)
proposed by [57,66,92] and adapted by [16]. Our model takes into account further features
for reducing model uncertainties and improving its performance. The new version of
the model is called Linear Upslope Model Extension (LUME), which aims to reconstruct
the extreme precipitation generated by the orographic uplift mechanism in a simpler
(two equations) and faster (immediate implementation) way but keeping a description
of the microphysical processes involved. Similarly to the previous version presented
in [16], LUME needs little information to work, a representation of the vertical state
of the atmosphere coming from the closest radiosonde located upwind with respect to
the target area and a detailed representation of the local orography. The model is here
described and tested through application to a group of recent case studies where the
role of orographic effects has triggered the extreme precipitation recorded at rain gauge
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stations [4,16,93]. These episodes were critical from a hydrometeorological viewpoint since
extreme rainfall has caused shallow landslides, debris flow, and flash floods across the local
watershed [1,4,16,93].

The paper is organized as follows. In the Materials and Methods section, LUME
equations are described, and in the Results section, two cases studied in the northern Italy
are reported. The fourth section contains a discussion of the results and some comparisons
between the extreme weather episodes are presented. Finally, the principal outlines of the
present work are reassumed in the Conclusions section.

2. Materials and Methods

This section describes LUME. Based on the theoretical insight offered by [16,57,66,67,92,94],
we have reviewed and improved the model with some “Extensions” with respect to the
previous model, the LUM, which makes it more suitable for practical application for
extreme precipitation analysis.

2.1. LUME Model Equations

Extreme orographic precipitations usually originate when a rather humid incoming
airflow starts to rise above a relief slope and water vapor condensation occurs. Therefore,
cloud microphysics can generate rainfall that is temporally delayed and spatially dispersed
in the direction of the airflow wind. This mechanism can be easily represented by the
following balance Equations (1) and (2) that simply correlate the incoming flux velocity
U(x,y) with the microphysical variable qc(x,y) and qs(x,y) and the source term S(x,y). qc(x,y)
represents the vertically integrated cloud water density and qs(x,y) is the hydrometeor
density, expressed in kg m−2. All quantities are vertically integrated, so the “z” dependence
is missed.

U(x, y)·∇qc(x, y) = S(x, y)−
qc(x, y)
τc

(1)

U(x, y)·∇qs(x, y) =
qc(x, y)
τc

−
qs(x, y)
τf

(2)

Two elements act to increase or decrease the rainfall intensity: the incoming water-
vapor flow (WVF0) and the relief h(x,y). The WVF0, expressed in kg m−1 s−1, represents
the initial condition that is responsible for carrying the amount of water vapor that causes
the precipitation. According to [57,66], it is directly related to the precipitable water PW that
is estimated from the radiosonde. This quantity expresses the integral across the column
height of the precipitation and is used as a proxy for evaluating the probability of extreme
precipitation. Since the atmosphere column is not a static element but generally follows the
airmasses that are blown from one location to another by the wind, WVF0 is obtained as a
product of PW and wind velocity vector U(x,y).

WVF0 is related only to the state of the atmosphere, but it cannot transform into
real precipitation if a triggering condition for water vapor condensation is matched. A
mountain range represents a real obstacle to the incoming flow that is naturally forced to
rise, condensate, and consequently produce rain. In Equations (3)–(6), the source term that
defines the condensation triggered by the slope gradient is described. In Equation (3), the
vertical component of the wind w(x, y) is calculated from the gradient of the terrain slope
∇h(x, y). In Equation (4), the condensation ratio is defined as a product of ρSref that is the
reference density of the atmosphere near the ground, the moist lapse rate Γm (0.0065 ◦C/m),
and the γ environmental lapse rate. In Equation (5), the water scale height (moist layer
depth) Hw is defined as a function of Rv = 461 J kg−1 K−1, Tref = reference temperature
on the ground, Lv = 2.5 · 106 J kg−1 and γ. Equation (6) expresses the source term in
integral form as a function of elevation z. The lower limit corresponds to z1 = LCL (Lifted
Condensation Level), while the upper limit corresponds to z2 = EL (Equilibrium Level).

w(x, y) = U(x, y)·∇h(x, y) (3)
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Cw = ρSref Γm/γ (4)

Hw = −
Rv T2

ref
Lv γ

(5)

S(x, y) =
Cw

Hw

∫ z2

z1

w(x, y)e−
z

Hw dz (6)

The previous version of the model (LUM) [16,67] had an important assumption: the
water vapor condensation is transformed directly into precipitation and, conversely, the
water vapor evaporates completely when the top of the mountain is overcome, and the flow
starts to descend. According to [57], this hypothesis is not realistic because precipitation
takes time to form due to microphysical processes of nucleation, aggregation, and coales-
cence [95] and to fall from cloud to the terrain surface with a non-infinite velocity [95]. In
this regard, the authors in [57] have modified the balance equation producing the system
of Equations (1) and (2), where two time-delay coefficients τc and τf, expressed in seconds,
were introduced with the other two microphysical variables qc(x,y) and qs(x,y). These
coefficients take into consideration the time of conversion from water vapor to a single
water drop due to microphysical processing and the time taken for a raindrop to fall from
the cloud to the soil surface.

According to [57], the model works in the following way. The source term S(x,y)
(Equation (6)) is activated when the incoming flow starts to rise above a slope and water
vapor condensation starts. The condensed water is stored temporarily in the cloud through
the qc(x,y) variable. Due to microphysical processes of nucleation, collision, and coales-
cence [95], the droplets start to form, increase their diameters, and convert a part of qc(x,y)
into qs(x,y). This process takes time, as described by the τc parameter. Then, qs(x,y) density
starts to increase even as the precipitation is starting to form and a part of the “cloud water”
is removed from the “cloud system”. The precipitation process takes time, as described
by the τf parameter, which defines the time taken by a droplet to fall from the cloud to the
ground. The precipitation term P(x,y) is no longer identified with the source S(x,y) but is
now described through Equation 7.

P(x, y) = qs(x, y)/τf (7)

2.2. Estimating Microphysical τc and Fallout τf Time-Delay Coefficients from Precipitation Efficiency

Time-delay coefficients try to resume very complex microphysical mechanisms that
occur in clouds and simulate the precipitation advection through an area. In some cases,
these coefficients can also be perturbed by other conditions such as the presence of cloud
convection, especially during summer or, conversely, the presence of low temperatures
that can transform the waterdrops into snow [33,94]. All these processes, which have been
addressed in a study that investigated more complex schemes [95], have not been explored
here, to prevent complexity in the simulation of the orographic precipitation mechanism.

However, further investigations have been carried out around time-delay coefficients.
In previous works, these quantities have always been tuned like calibration parameters
with typical values comprising between 200 and 2000 s, while in reality they have a clear
physical interpretation. Since these ranges span one order of magnitude, it is not trivial to
try to estimate the most representative ones for a particular event. The new methodology
proposed in this paragraph aims for their deterministic estimation based on the concept of
precipitation efficiency (PE) [92]. This quantity expresses in a general way the ratio between
the condensed water and the effective rainfall recorded on the ground [96,97]. Depending
on the type of model adopted, PE can be expressed using different formulations. According
to [57,92], in LUME, the PE depends on time-delay coefficients, as reported in Equations
(8)–(11). In Equation (8), the PE is a product of three terms: PEdynamic, PEcloud, and PEfallout.
The first term is related to the dynamic components of the incoming flux that are stored in
the term Ĥ that can be interpreted as the ratio of the moist layer depth Hw to the penetration
depth of the forced ascent d = U/Nm, where U is the wind module and Nm is the moist
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Brunt–Väisälä frequency [16,57]. PEdynamic is valid for an ideal sinusoidal terrain type
(exponent −0.5). PEcloud and PEfallout depend on τc and τf coefficients, respectively, from
wind-velocity module U and the parameter a that is representative of the width of the
simulated mountain range (50–100 km for our case studies).

In general, when the mechanism of the rainfall is instantaneous, as for the previous
model version (LUM) with τc and τf approximately equal to 0 s, the PE = PEdynamic, while in
other cases it tends to decrease since PEcloud and PEfallout assume values ≤ 1. The reference
value for precipitation efficiency is around 0.3, comprising between 0.2 and 0.4, which can
change sensibly in the function of the state of the atmosphere [96,97].

PE = PEdynamic · PEcloud · PEfallout (8)

PEdynamic =
(

1 + Ĥ2
)−0.5

(9)

PEfallout =

(
1 +

Uτf
a

)−1
(10)

PEcloud =

(
1 +

UτC

a

)−1
(11)

PE = a (WS)b with a = 137.47 and b = −1.179 (12)

Since we were interested in the estimation of the time-delay coefficient using PE, we
searched the literature for alternative ways of evaluating this quantity. Several authors have
proposed different methodologies to try to estimate the precipitation efficiency indirectly
based on radiosonde data recorded during the rainfall event [96–98]. Among others, the
one that appeared more robust is the one shown in Equation (12) proposed by [99], where a
power–law relationship with respect to wind shear (WS) is depicted (Figure 1).
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This empirical model for PE calculation has been considered as an input for Equation
(8). To estimate deterministically the two time-delay coefficients, we reworked Equations
(8) to (12) as follows:

1. From radiosonde data, PE was estimated through the empirical relation of Equation
(12);

2. Considering the quantities retrieved from radiosonde and local orography, the PEdynamic
was calculated from Equation (9);

3. Then, two different assumptions were tested for calculating the coefficient, inverting
Equation (8):

a. The two coefficients are equal, so τc = τf This condition, which is plausible
according to the range of compatible values proposed by the authors of the
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model in [57], permits one to invert and resolve Equation (8) coupled with (10)
and (11) straightforwardly;

b. The fallout term is estimated first, based on the time taken by the water drop
to fall vertically from the central part of the cloud to the surface, with an
average velocity (Vrain) of 5 m s−1 [17,19,94,97]. In this case, knowing from
the radiosonde the average heights of EL (Equilibrium Level) and LCL (Lifted
Condensation Level) of the cloud, it is possible to estimate the average cloud height
and the fallout coefficient using Equation (13). Then, using Equations (8)–(12), we
retrieve the value of the conversion coefficient τc.

τf =
0.5 · (EL− LCL)

Vrain
(13)

2.3. LUME Error Analysis

The LUME performance was evaluated through the RMSE (Root Mean Square Er-
ror) [100], comparing the simulated rainfall against reference values collected at local rain
gauges. Moreover, another indicator was examined, the BIAS [100], which is indicative of
how the model has correctly reproduced the event in terms of the total rainfall amount.
In particular, the BIAS is less than 0 if the model performs “drier” than the reality and is
“wetter” in the opposite case. Precipitation can be interpreted as a stochastic variable, and
several models can simulate the propagation of the errors in the results [101–103]. Concern-
ing the classical Gaussian distribution, which is typical of the temperature variable and
can be treated with an “additive” error model, the precipitation generally does not follow
this distribution type, so a “multiplicative” error model should be more appropriate [102].
To this end, two indicators similar to BIAS and RMSE have also been included, based on
the multiplicative model. To investigate the LUME performance in all case studies, both
“additive” and “multiplicative” error indicators, listed in Table 1, were calculated. An
additional index called AIS (All Indicator Scores) has been built and it represents the sum of
the absolute values of the 4 indicators. AIS was considered only for evaluating the overall
scores of each LUME application and for highlighting the best-reproduced event of the
dataset, the one that minimizes the AIS, i.e., the errors.

Table 1. Definition of errors in LUME based on their possible propagation in additive or multiplicative
error models.

Additive Multiplicative

Functional Form y = f(x) + ε y = f(x) ·ε

Bias [mm] BIASa = 1
n

n
∑

i=1
y− yref BIASb = yref·

1
n

n
∑

i=1

(
y−yref

yref

)
Root Mean Square Error [mm] RMSEa =

√
n
∑

i=1

(
y− yref

)2 RMSEb = yref·
√

n
∑

i=1

(
y−yref

yref

)2

All Indicator Scores (AIS) [mm] AIS = |BIASa|+ RMSEa + |BIASb|+ RMSEb

2.4. Case Studied in the Central Alps and Northern Apennines

Up to this point, we have described all the elements that characterize LUME. To
validate and test the model, a range of different case studies were analysed in two distinct
parts of northern Italy: the first group is located in the Lombardy region across the Central
Alps, while the second is situated across the Emilia Romagna region in the northern
Apennines. These areas were affected by several episodes of extreme precipitation events
that were characterized by high intensity and relatively short duration. The return time of
this rainfall has been estimated by [4,16] to be in the range of 10–100 years or more, so they
are likely to occur again and more frequently in the next decades.

These meteorological events caused several collateral effects at the catchment scale
from a hydrogeological viewpoint [1,4,7,15,104–106]. In the Alps, a lot of shallow landslides,



Water 2022, 14, 2218 8 of 25

debris flows, and flash floods were triggered by these events, while in the Apennines,
widespread soil slips, and debris flows occurred. Moreover, local rivers such as Adda
(1983), Pioverna (1997), Malasca (2008), and Varrone (2019) for northern Lombardy and
Parma (2014) and the Trebbia and Nure (2015) rivers in the northern Apennines experienced
high peak discharges that on some occasions broke existing records [1,4].

In all these cases, some common features were noticed and have been further explored
within LUME application:

• A rather irregular rainfall field distribution was recorded by local rain gauges, with
the stations closer to the mountain peaks reporting extreme values;

• Longitudinal distribution of the rainfall along the direction of the incoming airflow was
shown by the rain gauges network and also by radar observations (where available);

• The complete dissipation of the rainfall field was recorded far away from the mountain
range along the downward flank, and no rainfall was recorded at the bottom of
the range.

These features have allowed us to simplify the study, reducing the orography domain
computed by the model from a 2D field to a 1D trace, as depicted in Figures 2 and 3. As
a result, Equations (1) and (2) were simplified by discarding the dependency of the “y”
coordinate. Based on [16,107,108], a constant boundary layer elevation (BL) was included
to better simulate the incoming flux upsloping, excluding the part of the atmosphere layers
that stay at rest or do not participate in rainfall generation [107]. For defining the initial
state of the atmosphere, the two closest radiosonde stations were selected: the Milano Linate
Airport station for the events that happened across the Alps and the Ajaccio Corse Airport
station for the Emilia cases. Since the location of Ajaccio Corse Airport is rather distant
(300 km), we also included in the analysis the Cuneo Levaldigi Airport radiosonde (150 km).
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Radiosondes of Milan Linate Airport, Ajaccio Corse Airport, and Cuneo Levaldigi Airport are
considered for the initial conditions of LUME. The blue arrows show the traces considered for LUME
computations, while the orange dots show the starting/ending points of each trace considered for
sampling the digital elevation model (DEM).
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Figure 3. Rain gauge map for the area investigated of Tresenda 1983 (green), Bellano 1997 (yellow),
Talamona 2008 (gray), Premana 2019 (red), Parma 2014 (orange), and Piacenza 2015 (purple). The
table inset lists the number of rain gauge stations considered in this study.For the specific case of
Parma 2014, two stations were discarded due to uncertainties (Berceto and Musiara Superiore) about
data recorded with respect to surrounding stations while for Campora di Sasso and Calestano stations,
rainfall amount were averaged comparing them with LUME results..

3. Results

In Table 2, all key data necessary for the analysis of our case studies are reported.
Several precipitation factors were taken into account for the LUME application: the maxi-
mum amount recorded at local rain gauge networks, the duration, and the estimated return
period (RP) of each event. According to [1,4], the RP is evaluated according to the local
Intensity–Frequency–Duration parameters [109,110], and it can be appreciated that at least
4 to 6 events have shown RPs equal to or above 100 years. However, some hydrometeoro-
logical extremes such as flash floods and debris flows have also been recorded for the 1997
and 2008 events, even though the RPs were not the highest [1].



Water 2022, 14, 2218 10 of 25

Table 2. Studied events of extreme precipitation. Dates, locations, and extreme precipitation parame-
ters that describe the maximum amount, the duration, and the return period, and the hydrogeological
effects recorded on the territory. For 2008, 2014, and 2015 events, (**) represents the duration of the
most intense phase, while () is the duration of the entire event.

Event Location Station Extreme Precipitation Hydrogeological
Effects

- - - Max Amount
(mm)

Duration
(h)

Return
Period (yr) -

21–23 May 1983 Tresenda (SO) Ponte di Ganda 261 60 ≈100 Shallow
landslides

26–30 June 1997 Bellano (LC) Bellano 283 96 ≈50 Flash floods

12–13 July 2008 Talamona (SO) Morbegno 60 (174) 12 ** (72) ≈2 (10) Debris flows

11–12 June 2019 Premana (LC) Premana 209 13 ≈200 Flash floods

12–13 October 2014 Parma (PR) Marra 296.6 (298.8) 8 ** (12) ≈200 Debris flows

13–14 September 2015 Piacenza (PC) Salsominore 307.4 (308.6) 6 ** (12) ≈200 Debris flows

According to the required input parameters, the nearest radiosonde data were ex-
amined to retrieve initial conditions. Figure 4 presents a diagram of the WVF0 module,
with PE, BL, and WD from the radiosonde of Linate Airport (Milan, IT) for the events
located in northern Lombardy and the Ajaccio (Corse, FR) for the event located in the
northern Apennines. As can be observed from the WVF0 graph (Figure 4A), this quantity
shows a sinusoidal behavior that reaches a central peak within 12 h from the start of the
event. During this phase, the magnitudes of WVF0 are situated above the threshold of
400 kg m−1 s−1 that, according to [51,111], was established as a significant indicator of
extreme rainfall triggering across Europe. The selected case studies confirm that the highest
rainfall intensities were recorded in correspondence with the highest WVF0. The PE graph
(Figure 4B) was obtained using Equation (12) and describes the fluctuation of precipitation
efficiency as a function of wind shear (WS). In all cases, the PE is bounded between 0.6 and
0.2 with distribution around the mean values of 0.3–0.4, which are typical for this type of
precipitation event [96,99]. Regarding the BL (Figure 4C), there is a higher heterogeneity
with a fluctuation of between 500 m and 1500 m for the northern Lombardy events and
values approximately equal to 100–200 m for the northern Apennines. For the Apennine
areas, the influence of BL can be neglected, while for the Alps, it is necessary to exclude the
part of the atmosphere that does not participate in the orographic rainfall intensification.
The last picture (Figure 4D) represents the fluctuation of wind direction. The winds mainly
blow from the south quadrant, precisely from the southwest, and this is a common pattern
that has been shown by all the events. That situation justifies the application of LUME
along the 1D digital elevation model (DEM) traces defined approximately by the incoming
southerly flow direction. We considered the Hydroshed DEM [112] (resolution of 90 m
at the equator) that was smoothed due to a 1 km “smoothing window” to reduce the
sensitivity of the upslope model to the steep gradients [67]. This is shown in Figure 2, with
blue arrows indicating the DEM traces. The latter were obtained by averaging 5 parallel
DEM traces across the investigated areas. Their orientations were opportunely corrected
according to the rainfall paths depicted by rain gauge amounts (Figure 3), considering the
airflow incoming direction, and, where possible, using meteorological radar information.
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Figure 4. Initial conditions retrieved from radiosonde data regarding (A) the WVF0, (B) the PE,
(C) the BL, and (D) the WD. As can be seen, there is a certain variability of WVF0 that, during the
most intense phase, has values higher than 400 kg m−1 s−1. PE is less dispersed and fluctuates
around 0.3–0.4 values, typical for this type of precipitation. BL is much more dispersed and appears
significant for Alps cases rather than Apennine cases, where its influence is negligible. WD comes
from a southwest direction in all cases studied. The variable evolution was studied according to the
radiosonde data 24 h in advance with respect to the critical phase of the event (as can be appreciated
by WVF0 fluctuation). For 1983 and 1997 events, we have depicted only the most intense phase, even
though the rainfall lasted for 60 h and 96 h, respectively.

After the reconstruction of the initial conditions (WVF0, PE, BL, and WD) and the
orographic boundaries (1D DEM traces), the other parameters necessary for LUME appli-
cation were calculated. Table 3 lists, among others, the τc and τf time-delay coefficients
that have been obtained primarily from the PE estimations, applying Equations (8)–(12).
The methodologies presented in Section 2.1 and depicted in Figure 5 were implemented
automatically for obtaining a range of possible realistic values of those coefficients. Then,
to address the specific event variability of PE (Figure 4B), a brief Monte Carlo iterative
procedure was applied for retrieving the best time-delay coefficients that minimize the
multiplicative root mean square errors (RMSE) of the simulated rainfall with respect to the
referenced rain gauge observations.
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Table 3. LUME parameters for extreme precipitation modelling. For 2014 and 2015, due to the greater
distance of the Ajaccio radiosonde station from the location of events (300 km), we also considered
the Cuneo () and Linate [] radiosonde stations (150 km and 100 km) located downstream.

Event Location LUME Parameters for Each Extreme Precipitation Event

- - U (m s-1) Dir (◦) Hw (m) WVF0 max
(kg m−1 s−1) τc (s−1) τf (s−1) hBL (m) Pbackground

(mm)

21–23 May 1983 Tresenda (SO) 18.6 192.4 2600 482.4 3750 500 ≈600 34

26–30 June 1997 Bellano (LC) 20.8 196.4 2600 731.3 3500 750 ≈400 76

12–13 July 2008 Talamona (SO) 15.8 222.3 2600 545.6 2500 1000 ≈250 60

11–12 June 2019 Premana (LC) 22.2 194.3 2600 607.5 1000 500 ≈600 10

12–13 October 2014 Parma (PR) 15.4 205.1 2600 832 (610) [600] 1000 750 ≈100 0

13–14 September 2015 Piacenza (PC) 15.9 229.2 2600 720 (640) [815] 1300 1000 ≈100 0
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Figure 5. Monte Carlo iterative procedure adopted for estimating deterministically time-delay
coefficients through minimization of multiplicative RMSE due to constrained PE.

As can be seen in Table 3, τc values are generally higher than τf for the Alps cases
than for the Apennine cases. Furthermore, to take into account the non-orographic ef-
fects [57] that could originate across the Valpadana, for events in 1983, 1997, 2008, and 2019,
background precipitation was included in the model. These data were equal to the mean
of the rainfall amounts recorded by the surrounding rain gauge stations for the trace’s
starting point. Regarding the duration of the events simulated, we considered the values
reported in Table 4. Since 1983 and 1997 lasted more than one day (60 h and 96 h), the WVF0
vector has been averaged considering the data in Figure 4A, respectively 300 kg m−1 s−1

and 600 kg m−1 s−1. For other events, the duration (~12 h) was almost comparable to the
central phase where the higher WVF0 was recorded by radiosonde, so that the highest
values were considered for the computation.



Water 2022, 14, 2218 13 of 25

Table 4. Error calculation in LUME for the event examined with the two error models. For the event
of Parma 2014, two rain gauge stations (Berceto and Musiara Superiore) were excluded since they
were suspected to be outliers or not representative of that event.

Event Location BIAS (mm) RMSE (mm) AIS (mm)

- - Additive Multiplicative Additive Multiplicative -

21–23 May 1983 Tresenda (SO) 7.9 2.05 29.42 35.92 75.29 [5]

26–30 June 1997 Bellano (LC) −16.80 −19.81 39.80 41.76 118.17 [6]

12–13 July 2008 Talamona (SO) 4.9 5.09 30.81 29.79 70.59 [2]

11–12 June 2019 Premana (LC) 4.31 2.92 19.78 19.42 46.43 [1]

12–13 October 2014 Parma (PR) −3.76 −0.2 33.36 47.07 84.35 [4]

13–14 September
2015 Piacenza (PC) −4.43 −3.4 32.24 48.93 89.05 [5]

In Table 4, the rankings of LUME are listed. Looking at BIAS indicators, additive
and multiplicative models exhibit similar performances. For the most recent events (2008,
2019, 2014, and 2015), the values are rather near to 0 and confirm a negligible tendency
of the model to under or overestimate the rainfall field across the entire event. For 1983,
errors are comparable to the previous group, while for 1997, they are higher but always
confined below 20 mm. Looking at RMSE values that are indicative of the error committed
by the model at the single station, we can see that additive and multiplicative formulations
are comparable. Errors oscillate between 20 mm and 50 mm. Among others, LUME
has performed rather well for 2019, which is the event that admitted the lowest errors.
Looking at the index AIS, we can confirm the best simulations for 2019, followed by 2008.
Simulations for 1983, 2014, and 2015 performed similarly well, while 1997 was the worst
event simulated.

The next graphs (Figure 6) report the visual interpretation of LUME computation for
the case studies analysed. The dotted black line represents the terrain profile along the
rainfall traces. The blue dots represent the rain gauges’ total rainfall amounts for the whole
event duration, while the green line represents the rainfall profile reproduced by LUME.
The red line shows the same computation using the previous version of the model without
time-delay interpretation. With respect to the previous version of the model [16], LUME
results are rather insensitive to the type of smoothing function applied to the produced
rainfall field. In this study, the 20 km smoothing window was considered to replicate
the same operations of the previous study [16] and to produce comparable LUME and
LUM results.

Looking at the distribution of rain gauge amounts along the traces in Figure 6, it seems
that only the orographic mechanism can justify this type of rainfall distribution. As can
be seen, the maximum rainfall amounts simulated by LUME are indeed situated near the
mountain peak where the orographic effects are expected to be much more intense or at
least shifted slightly downward. Comparing green (LUME) and red (LUM) lines, it can
be seen that the unphysical high-frequency oscillation of the LUM model disappeared. In
fact, the LUM model has a higher sensitivity to the upslope–downslope terrain variation
that admits even large errors in precipitation amounts (Figure 6), while the rainfall field
reconstructed with LUME gives a more realistic representation with respect to reference
rain gauges. According to [57,92], the time-delay coefficients act to modulate the rainfall
after the slope rises, simulating better the rainfall advection due to incoming flow.
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Figure 6. Graphical depiction of selected case studies area over northern Lombardy (Central Alps)
from (A) to (D), and Emilia (northern Apennines) from (E) to (F). Graph (A) depicts the Tresenda
1983 event, (B) the Bellano 1997 event, (C) the Talamona 2008 event, (D) the Premana 2019 event,
(E) the Parma 2014 event and (F) the Piacenza 2015 event. In each graph, the x-axis represents the
progression of the orographic trace depicted by a black dotted line. The blue dots represent the
rain gauge amount along the traces, while the green line represents the precipitation simulated by
LUME. The dotted red line shows the model simulation caried out with the previous version of the
upslope model LUM described in [16]. In the six pictures can be appreciated the difference between
LUM and LUME simulations. In almost all cases, the former has improved the reconstruction of the
rainfall distribution if compared to the ground-based rain gauges records. With respect to the LUM
version, unphysical oscillation of precipitation distribution is reduced and smoothed by time-delay
coefficients, especially for (B, D) events. In graph (E), within the black circle, the suspected rain
gauge outliers are highlighted, and they are also included in Figure 3. In the orange square, the
“fictitious rainfall station” obtained is computed as an average between Calestano station (140 mm)
and Campora di Sasso station (25 mm), which are located about 15 km from each other but on the
same transversal section along the trace. Here can be appreciate the uncertainties still embedded in
the LUME model in the reconstruction of the rainfall dynamics along the lee side of the mountain
range where larger errors are committed also for other events studied, especially (A, C).

4. Discussion

The main purpose of this study was to test the capability of the new model, LUME, in
the evaluation of interpreting extreme precipitations that occur in mountainous areas. The
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analysis conducted in a previous work [16] has been refined and extended to propose new
insight into the modelled process of orographic precipitation in six case studies.

4.1. Comments on Cases Studied in the Central Alps and Northern Apennines

As highlighted by the results, each event has its own peculiarities. According to [16,113,114],
the events of 1983 and 1997, depicted in Figure 6A,B, were noticeably longer since they
developed over several days, 60 h and 96 h, respectively. The authors of [57] suggest the
implementation of the linear upslope model just in those situations when the stationarity
of rainfall can emerge as a peculiar feature of the event. Generally, this hypothesis is
not suitable for precipitation lasting more than 24 h since different phases may alternate
driven by air-mass circulation [17,96,115]. Fortunately, the historical analysis showed that
these events were rather persistent over limited mountainous areas [93,116]; therefore, the
implementation of LUME was evaluated appropriately. In both cases, the extremes were
recorded at a particular location that LUME highlighted correctly. It is evident how the
delay coefficients (τc and τf) can modulate rainfall distribution across the mountain peak,
giving a realistic interpretation of the orographic effect with respect to the previous version
of the model. Especially for the Tresenda case in 1983, this fact is probably the main reason
why shallow landslides evolved into debris flows that were triggered at this particular
location [1,7]. For the Bellano case in 1997, the orography is not so pronounced since the
direction of the incoming flow was not oriented perpendicular to the mountain range. As
a result, the orographic effect is more difficult to observe accurately since morphology
is rather scattered. Nevertheless, the computed rainfall field correctly interpolates the
reference data.

The other four cases studied were chosen since they are representative of a more
impulsive phenomenon, characterized by shorter duration and higher intensities. For the
northern Lombardy area, the 2019 event has already been fully analysed in a previous
work [16], but here its reconstruction based on the updated model is presented. As can
be appreciated from Figure 6D, the green line now interpolates the rain gauges rather
well, giving a more realistic interpretation of the orographic effect with respect to the
previous study (red line), where time-delay coefficients were not implemented. Even if the
extreme value of 210 mm recorded at Premana station is not properly matched, LUME can
provide useful insights into the area that experienced the highest rainfall ratios, avoiding
the limitations of the previous version, as can be seen especially in the downslope flank.

The 2008 event, shown in Figure 6C, was the most difficult to analyze with LUME. The
main reason was that the 2008 event was rather intermittent, characterized by alternating
phases of heavy rain and no rain that lasted some hours [1]. Thus, the estimation of the
event’s duration has represented a challenge that, depending on how the main rainfall
event is interpreted, can be between 12 h and 72 h. These uncertainties have also affected the
evaluation of RP which can vary from 2 to 10 years. In Figure 6C, we have decided to choose
the 72 h cumulative rainfall from reference rain gauges, while for LUME to run efficiently,
we have considered an effective duration of 24 h, discarding the no-rain periods and
considering the radiosonde parameters of the central phase. With these corrections, LUME
improved sharply in performance, reaching similar scores to the other cases. It is worth
noting that the hypothesis of stationarity may fail especially during the summer, when
convections and subsequent thunderstorm formation may be triggered [17,21,111,117]. By
definition, thunderstorms may lead to rainfall intermittency and enhanced spatial scattering
also due to secondary feedback with local orographic factors [77,118]. In our opinion, this
represents one of the main drawbacks of LUME. The former model is noteworthy for its
simplicity and linearity [57], but we are confident that further studies are needed in this
direction, taking into account also the time dependence.

The events of 2014 and 2015 across the Apennine mountain range represent a typical
example of the orographic effects that frequently affect the Liguria and Emilia regions [20,104].
In both cases, the incoming humid flow from the south has encountered the Apennines
barrier and has been constricted in rising and condensing, leading to the triggering of
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extreme precipitation. Looking at the graphs, LUME has successfully reproduced the
recorded rainfall amounts, especially for the event of 2015, Figure 6F. Similar results have
been obtained for 2014 apart from two outliers that have been recorded in the downward
flank, highlighted in the black circle in Figure 6E and corresponding to Berceto and Musiara
Superiore stations. These outliers have shown rather lower rainfall amounts that cannot be
justified by the model considering only the downslope evaporation mechanism. According
to [57,119], downslope evaporation is a critical process to reproduce, since local factors
such as downwind turbulence can enhance the drying mechanism of precipitation. In our
opinion, the marginal localization of these stations, as depicted in Figure 3, with respect
to the principal trace, in addition to the high spatial variability of rainfall, may have an
influence: these stations located downstream have probably experienced a weakened
rainfall phenomenon. This is confirmed by the comparison of Calestano (140 mm) and
Campora di Sasso (25 mm) rain gauges that are located at the same transversal section of
the trace but are 15 km apart. Taking the average of these two stations (82.5 mm, orange
square in Figure 6E), this value is close to the LUME estimation since it crosses the green
line. Apart from these issues in the downward flank, the areas subjected to the highest
rates were correctly matched by LUME.

4.2. Orographic Precipitation Linear Regression with Elevation

With LUME, it was possible to explore the mechanism of the orographic effect more
deeply. As can be seen from the results, a certain relationship between elevation and rainfall
was found. In some cases, an increase in the amount of rainfall with elevation was observed.
In Figure 7, the elevation–precipitation regression lines for each of the events studied are
depicted, while in Table 5, the coefficients and the R2 index are reported. According to the
previous results, not surprisingly, the performances of the simple linear regressions are
rather low since the R2 values are always below 0.5. In particular, for Bellano 1997, it seems
that there is no correlation with topographic elevation, while for Tresenda 1983, Talamona
2008, and Piacenza 2015, the scores are noticeably higher, around 0.4. The other two cases
are settled intermediately, with R2 comprising between 0.2 and 0.3.
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Table 5. Linear regression coefficient and R2 calculated for the event simulated by LUME. Note the
poor score of the regression, especially for the Bellano 1997 event, while for the others, the R2 is
always somewhat below 0.5.

Event Location Linear Regression Precipitation–Elevation Coefficients

- - a [mm m-1] b [mm] R2

21–23 May 1983 Tresenda (SO) 0.096 64.386 0.400

26–30 June 1997 Bellano (LC) 0.030 169.280 0.010

12–13 July 2008 Talamona (SO) 0.069 94.731 0.385

11–12 June 2019 Premana (LC) 0.057 61.786 0.322

12–13 October 2014 Parma (PR) 0.130 30.267 0.239

13–14 September 2015 Piacenza (PC) 0.167 115.240 0.410

16–19 July 1987 Event 1987 0.125 150 -

Figure 7 plots the rainfall–elevation regression line calculated for another significant
event that occurred in the Lombardy region in July 1987 [1,93,116]. The line obtained
by [120] is representative of the typical rainfall–elevation relationship that could occur
across the southern Alps during a rather intense event (RP~100 yr) [116]. Looking at
the parameters of the examined events, we can appreciate that the coefficients a and b are
comparable to the 1987 event. Tresenda 1983, Parma 2014, and Piacenza 2015 show a similar
rainfall–elevation gradient very close to the reference value of 0.125. For other events, the
angular coefficient is about one-half of the reference, showing a weaker rainfall–elevation
gradient. The b coefficient exhibits a higher variability depending on the duration of the
event and the total amount recorded at lower elevation stations. Apart from Bellano 1997,
which was the longest event, the others show a b variability of between 30 mm and 115 mm.

As already mentioned in the introduction, trying to find the best rainfall–elevation
relation for a particular area at the event-based scale is not straightforward, confirming
the difficulties encountered by [53,54]. In fact, the spatial and temporal variability of
the precipitation, especially if the orographic effect can trigger convective thunderstorms,
generally does not follow a linear rainfall–elevation function [21,27]. As can be observed
from Figure 7 and Table 5, a tendency may be noticed but the score of linear regression
is rather low, R2 < 0.5, especially for event-based analysis. However, using LUME, it
was possible to add further information to the mechanism of orographic precipitation.
Figure 6 shows that rainfall redistribution is different considering upslope and downslope
mountain flanks. The rainfall advection operated by time-delay coefficients is crucial for
interpreting correctly why a certain amount of rainfall has occurred at a particular location.
In addition, with respect to the previous version, LUM, a smoothing function for resulting
precipitation is not strictly necessary since the produced rainfall field is much more uniform,
and unphysical oscillations are not detected in the ultimate solution. Moreover, with LUME,
it was possible to confirm those events that have experienced a much stronger orographic
uplift (Tresenda 1983, Parma 2014, and Piacenza 2015) than others (especially Bellano 1997).

4.3. Comments on LUME

The mechanism of orographic upsloping has been responsible for the rainfall intensifi-
cation, so LUME application has proven to be suitable for interpreting these cases. However,
some assumptions have been made in our study to simplify the analysis.

All the simulations have been carried out in 1D and not in the 2D domain since
some similarities in rainfall field patterns were noticed. According to [20,21,119], during
the summer, orographic precipitation is generally associated with convection that, in the
absence of wind, should assume a circular structure. Especially for those cases where radar
meteorological data were available, the shape of the convective cells was observed to be
elongated northward due to the presence of sustained southern flow [1,4]. Thus, since the
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longitudinal dimensions were more significant than the transversal sections, considering
the symmetries, we have preferred to draw a trace of precipitation across the longitudinal
direction. The trace was adopted to identify the local orography from the DEM.

In the specific cases of 2014, 2015, and 2019 events, the radar data available have
allowed us to correctly address the position of the trace, while for the other three it was re-
trieved approximately by looking at the rain gauge rainfall distribution. Radar information
appears to be crucial additional data for carrying out back-analysis studies in a more perfor-
mant way with LUME. Even meteorological radars are not always precise in detecting the
exact rainfall intensity over land [88], they can depict precisely the evolution of the rainfall
field across time, showing those areas that experience more intense orographic effects.
Since radar data are now starting to become more available, their integration within LUME
not only improves the trace detection but also is helpful in the choice of the representative
rain gauge stations that experienced extreme rainfalls.

With respect to the previous work, the time-delay coefficients can now realistically
reproduce the event rainfall pattern, taking into consideration other physical processes
such as the microphysics of raindrops and their falling, which allows for better simulation
of rainfall advection. However, adding further details to the model may complicate its
implementation, especially in defining the most suitable values for time-delay coefficients.
According to [57], these coefficients were intended primarily for model calibration, and
some ranges have been proposed as a reference. In the proposed new version, further im-
provements were acquired based on the precipitation efficiency, evaluated from radiosonde
parameters and then used to estimate the time-delay coefficients through Equations (8)−(12).
Unfortunately, the evaluation of PE from radiosonde data is rather difficult to assess be-
cause a unique rigorous formulation does not exist [97]. Among others [96–98,121], in
this work, we have chosen the one that correlates with wind shear (WS), according to [99].
Moreover, the values of time-delay coefficients can vary under the different hypotheses
presented in Section 2.2. Nevertheless, considering a narrow set of possible combinations
allows a reduction in the coefficient’s variability, leading to a better representation of the
precipitation mechanism [92]. Looking at the case studies analysed, there is no strict rule
that binds time-delay coefficients. In fact, from our experience, we have observed that,
generally, τc ≥ τf. The τf coefficient which is a measure of the falling velocity of the droplet
has exhibited a lower variability concerning the τc.

All the extreme precipitation events have one element in common: the presence of a
sustained and humid airflow incoming from the south quadrants. This type of airflow is
responsible for forming the large part of water vapor that is necessary to condense when
it rises above the Apennines’ or the Alps’ southern flank. However, this process may be
perturbed by the presence of two factors: a convergence of fluxes and the boundary layer.
The effect of the boundary layer has been already described in [16] and it represents a
necessary condition that LUME should also take into account, especially for the events that
have affected the Alps. The presence of BL can noticeably decrease the slope effect, and
there is a reasonable explanation for this if we consider the conformation of the Valpadana
basin. Without the BL, the results for 1983, 1997, and 2008 appear overestimated, and this
follows the observations in [16] about the 2019 event. As a counter-example, in 2014 and
2015, the BL was absent or negligible, looking at the radiosondes profile data. This fact is
in accordance with the location of the Apennines, which are dislocated near the Ligurian
sea where the sea has driven wind currents that can deplete BL in a much more efficient
way [17,108]. The effects of the flow convergence are more evident in the 2014, 2015,
and 2019 events, where radar meteorological data were available [4,104]. Undoubtedly,
the convergence can act positively on extreme precipitation generation, leading to the
formation of regenerating (stationary) convective systems such as those spotted for the
three events cited [17,31,51,111]. Moreover, flow convergence can provide the necessary
fuel to strong convection formation that may be in principle enhanced if low-level jets are
triggered, increasing air mixing within the BL [20,77,122]. This positive feedback is rather
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difficult to observe even using a LAM model [17,123] and has not been analyzed in LUME,
but can in principle intensify the orographic upslope mechanism [20].

One of the main drawbacks of the proposed methodology is the dependency on the
availability of near radiosonde data, necessary for describing the vertical profile of the
atmosphere that assesses the state variables, especially the initial conditions for incoming
southerly flow (WVF0 and U) [16,67]. Since for northern Lombardy, the radiosonde station
of Linate was quite near to the trace’s starting points, shown in Figures 2 and 3, whereas
for the Emilia case studies, the parameters were considered from Ajaccio station, which is
rather far (300 km) from the investigated area. A first run was carried out using Ajaccio
WVF0 but the resultant rainfall field appeared rather underestimated (BIAS around −20%
for 2014 and around −40% for 2015 events) with respect to the one recorded in the area.
A possible explanation is the presence of the warmer Ligurian Sea, which has probably
contributed to an increase in the WVF0 of the incoming southern flow [36,43]. This fact is
plausible since the sea path of the wind is about 300 km long before reaching the Apennines.
Another hypothesis could be related to the airflow convergence mechanism, typical of
the Ligurian region, that has intensified wind velocities locally, increasing the U term
and consequently WVF0 [90,124–126]. To cope with these issues, the Cuneo Levaldigi
and Linate radiosonde were also analyzed because, with respect to Ajaccio, they could
realistically depict the atmospheric state on the downslope flank of the Apennine mountain
range. Looking at Table 3, we can see that:

• For the 2014 event, Cuneo and Linate WVF0 were in accordance (around 600 kg
m−1 s−1), while Ajaccio was higher (832 kg m−1 s−1) but uncertain. LUME was run
iteratively, modifying the input WVF0 from Ajaccio at the starting point of the trace
until the Cuneo and Linate WVF0 values were matched at the ending point of the trace.
As a result, the initial condition for LUME was estimated indirectly from surrounding
radiosonde stations. The best performances were obtained by slightly increasing the
Ajaccio value up to 900 kg m−1 s−1. Changing the initial condition required a model
recalibration that was obtained for τc = 1000 s and τf = 750 s. For simplicity, other
initial parameters were kept the same for Ajaccio stations.

• For the 2015 event, the same procedure was adopted considering Linate and Cuneo
WVF0, respectively equal to 815 and 640 kg m−1 s−1. The best performance was
obtained considering the Linate radiosonde as a boundary condition, while when
using Cuneo data, rainfall fields were underestimated. Moreover, with respect to the
2015 event, Linate is about 100 km northward, so it is more representative than Cuneo,
which is located 150 km westward (Figure 2). The input WVF0 was increased by
about 55% up to 1160 kg m−1 s−1and LUME was recalibrated, giving τc = 1300 s and
τf = 1000 s.

The solutions presented here for Emilia’s case studies aim to cope with data scarcity
and its uncertainties. It represents a practical method that contains several approximations
(only WVF0 value is modified and not other radiosonde parameters) but, for the two cases
analyzed, the model performance has improved a lot, reducing rainfall field underestima-
tion. Another alternative strategy consists of taking into account newly available reanalysis
data [82,127,128] that could provide in some cases a reasonable reconstruction 3D state of
the atmosphere at any location and for several atmospheric layers. Considering these data,
not investigated in this work, the applicability of LUME could be significantly extended,
not only for well-monitored places but also for those remote locations too distant from the
radiosonde data stations. Moreover, high-resolution satellite data [79] are now starting to
become available worldwide and to be included inside LAMs. These data are generally
adopted for tracking water vapor fluxes, especially in atmospheric rivers and extratropical
cyclonic structures [17,89,91,129,130]. Further explorations in this field could be helpful for
LUME to reduce such uncertainties in WVF0 estimation. In fact, by integrating satellite
measurements with radiosonde data, a more complete description of the local 3D structure
of the atmosphere could be in principle acquired.
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5. Conclusions

LUME has been successfully tested to interpret extreme precipitation that has triggered
severe episodes of hydrometeorological and hydrogeological hazards across mountainous
areas. A further extension of the model proposed with respect to a previous study has
been assessed considering, through time-delay coefficients, a more realistic reproduction of
the rainfall field simulating better the precipitation advection due to incoming flow. The
novelty of the new model lies in the methodology proposed for a deterministic estimation
of time-delay coefficients through the precipitation efficiency assessment from available
radiosonde data. In this way, τc and τf coefficients are no longer calibration parameters of
LUME but could be correlated with the real state of the atmosphere recorded during the
rainfall event.

To address the potentiality of LUME, six extreme rainfall events were selected and
reproduced by the model. In all the case studies, the orographic effect on incoming humid
southerly flow was the main triggering cause of precipitation and LUME confirmed this
fact. The analysis has shown some differences, highlighting Tresenda 1983, Talamona 2008,
and Piacenza 2015, with a more intense orographic effect than the others, especially Bellano
1997. This result was also confirmed by the simple linear rainfall–elevation regression
calculated for all case studies. Even if the rainfall gradient is somewhat comparable to
the reference event of 1987, it is rather difficult to find a simple rainfall–elevation relation
for a particular event (R2 < 0.5), confirming the inapplicability of regression models for
observing the orographic effect at a single-event scale.

Despite the proposed assumptions (event stationarity using the maximum or average
WVF0 for the whole duration), LUME scores at the event-based level achieved an effective
level of performance that is comparable to the LAM’s results. Depending on the specific
event, RMSE multiplicative errors are generally below 50 mm, giving the best scores
for the Premana 2019 event (20 mm). The hypothesis of stationarity has been revealed
as not always suitable for interpreting dynamic events such as extreme rainfall where
convective behaviours may dominate, enhancing rainfall scattering. Furthermore, the
1D hypothesis, even if it is considered sufficient for these cases, is no more practicable if
broader widespread events must be studied. These model limitations are exacerbated by
lack of data and the uncertainties adopted for model initialization that in some cases is
not realistic since other processes are involved in their definition (WVF0 for Parma 2014
and Piacenza 2015). In this regard, the problem has been resolved estimating indirectly
the unknown initial conditions (WVF0) for LUME, considering the data coming from
surrounding radiosonde stations. However, since radar data, satellite data, and reanalysis
data are starting to become available, we are confident that future improvements of LUME
will reach a better integration among these data sources, reducing model initialization
uncertainties.

Climate change poses new challenges to a deep understanding of extreme rainfall
events. Their physical peculiarities cannot yet be detected by climate models; however, a
closer inspection of the rainfall generation mechanism is necessary since extreme rainfall
events are projected to increase [41]. LUME represents a simple tool that has proven helpful
to understand how the orographic mechanism can intensify the precipitation for a group of
extreme events. In this regard, acquiring insight into possible hydrometeorological critical
situations is mandatory for increasing local community resilience against climate change
effects.
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115. Ćurić, M. Numerical Modeling of Thunderstorm. Theor. Appl. Climatol. 1989, 40, 227–235. [CrossRef]
116. Luino, F.; De Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the

Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2020, 12, 133.
[CrossRef]

117. Cotton, W.R.; Bryan, G.H.; Van Den Heever, S.C. Cumulonimbus Clouds and Severe Convective Storms. In Storm and Cloud
Dynamics; Elsevier: London, UK, 2011.

118. Emanuel, K.A. Atmospheric Convection; Oxford University Press: New York, NY, USA, 1994.
119. Kunz, M.; Kottmeier, C. Orographic Enhancement of Precipitation over Low Mountain Ranges. Part I: Model Formulation and

Idealized Simulations. J. Appl. Meteor. Climatol. 2006, 45, 1025–1040. [CrossRef]
120. Chardon, M. Les Catastrophes Naturelles de l’été 1987 En Lombardie: Crues, Inondations, Écroulement de Val Pola. Rev. Géogr.

Alp. 1990, 78, 59–87. [CrossRef]
121. Anip, M.; Market, P. Dominant Factors Influencing Precipitation Efficiency in a Continental Mid-Latitude Location. Tellus A 2007,

59, 122–126. [CrossRef]
122. Hodges, D.; Pu, Z. Characteristics and Variations of Low-Level Jets and Environmental Factors Associated with Summer

Precipitation Extremes over the Great Plains. J. Clim. 2019, 32, 5123–5144. [CrossRef]
123. Herman, G.R.; Schumacher, R.S. Extreme Precipitation in Models: An Evaluation. Weather Forecast. 2016, 31, 1853–1879. [CrossRef]
124. Davolio, S.; Silvestro, F.; Gastaldo, T. Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over

Liguria, Italy. J. Hydrometeorol. 2017, 18, 2659–2680. [CrossRef]
125. Gallus, W.; Parodi, A.; Maugeri, M. Possible Impacts of a Changing Climate on Intense Ligurian Sea Rainfall Events. Int. J.

Climatol. 2017, 38, 323–329. [CrossRef]
126. Weller, E.; Shelton, K.; Reeder, M.J.; Jakob, C. Precipitation Associated with Convergence Lines. J. Clim. 2017, 30, 3169–3183.

[CrossRef]
127. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al.

The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
128. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The

NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [CrossRef]
129. Ralph, F.; Waliser, D.; Dettinger, M.; Rutz, J.; Anderson, M.; Gorodetskaya, I.; Guan, B.; Neff, W. The Future of Atmospheric River

Research and Applications. In Atmospheric Rivers; Springer: Cham, Switzerland, 2020; pp. 219–247. ISBN 978-3-030-28905-8.
130. Lavers, D.; Villarini, G.; Allan, R.; Wood, E.; Wade, A. The Detection of Atmospheric Rivers in Atmospheric Reanalyses and Their

Links to British Winter Floods and the Large-Scale Climatic Circulation. J. Geophys. Res. Atmos. 2012, 117, 20106. [CrossRef]

http://doi.org/10.1029/2008EO100001
http://doi.org/10.1007/s12665-013-2986-7
http://doi.org/10.1007/BF00865973
http://doi.org/10.3390/w12010133
http://doi.org/10.1175/JAM2389.1
http://doi.org/10.3406/rga.1990.2767
http://doi.org/10.1111/j.1600-0870.2006.00208.x
http://doi.org/10.1175/JCLI-D-18-0553.1
http://doi.org/10.1175/WAF-D-16-0093.1
http://doi.org/10.1175/JHM-D-17-0073.1
http://doi.org/10.1002/joc.5372
http://doi.org/10.1175/JCLI-D-16-0535.1
http://doi.org/10.1002/qj.3803
http://doi.org/10.1175/1520-0477(1996)077&lt;0437:TNYRP&gt;2.0.CO;2
http://doi.org/10.1029/2012JD018027

	Introduction 
	Materials and Methods 
	LUME Model Equations 
	Estimating Microphysical c  and Fallout f  Time-Delay Coefficients from Precipitation Efficiency 
	LUME Error Analysis 
	Case Studied in the Central Alps and Northern Apennines 

	Results 
	Discussion 
	Comments on Cases Studied in the Central Alps and Northern Apennines 
	Orographic Precipitation Linear Regression with Elevation 
	Comments on LUME 

	Conclusions 
	References

