
An industrial application of formal model based
development:

the Metrô Rio ATP case

Alessio Ferrari, Mario Papini
General Electric Transportation Systems

Via P. Fanfani, 21
Florence, Italy

{alessio.ferrari, mario.papini}@ge.com

Alessandro Fantechi, Daniele Grasso
University of Florence, D.S.I.

Via di S.Marta, 3
Florence, Italy

{fantechi, grasso}@dsi.unifi.it

ABSTRACT
The railway and metro signaling industries are currently in-
vestigating strategies for the introduction of formal model
based development within their development processes.
Among the various platforms supporting this technology, the
Simulink/Stateflow tool-suite has been adopted in various
safety-critical domains for modeling and code generation of
control systems. Despite their flexibility and ease of use,
introduction of these tools for developing dependable soft-
ware, and in particular signaling applications, has been often
hampered by the lack of a rigorous formal semantics and by
the absence of a certified code generator. This paper re-
ports on the Simulink/Stateflow based development of the
on-board equipment of the Metrô Rio Automatic Train Pro-
tection system, describing the design strategy and the ap-
proach followed in addressing weaknesses and certification
issues related to the adopted tool-suite.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification—formal methods; D.3.4 [Programming Lan-
guages]: Processors—code generation

General Terms
Design

Keywords
Metro Signaling, Model Based Development, Modeling Guide-
lines, Transport, Rail

1. INTRODUCTION
The increase in productivity and facilitation of safety assur-
ance that the adoption of formal modeling and code gener-
ation technologies can bring in developing reliable products
is described by many case studies [12]. In the metro and

railway signaling domain, where the safety culture is tradi-
tionally and necessarily strong, there is increasing interest
in formal methods and how they can be applied to the de-
velopment of systems, with automatic train control systems
being a leading candidate for these techniques. Paris Metro
[4] and San Juan Metro [10] are two notable examples of this
trend. Despite these successes, combining formal methods
with model driven development and code generation is still
at its initial stages within the signaling industry.
General Electric Transportation Systems (GETS) was com-
missioned for the adaptation of its SSC Automatic Train
Protection (ATP) to Metrô Rio in 2008. This was a time
when GETS was finishing its first large scale development
project that made use of formal model based development.
In an effort to improve its development process, GETS adop-
ted the Simulink/Stateflow platform first for the develop-
ment of prototypes [3] and afterwards for requirements for-
malization and code generation [5]. Experimentation with
the code generator led to the definition of an internal set
of modeling rules in the form of an extension of the MAAB
guidelines [2], a stable and widely accepted standard devel-
oped by automotive companies.
The SSC - Metrô Rio ATP project provided the opportu-
nity to refine the modeling activity toward a more formal
approach. Indeed, despite the flexibility and ease of use of
Simulink/Stateflow, the tools have two fundamental limi-
tations in this type of application: the lack of a rigorous
formal semantics and the absence of a certified code genera-
tor. This paper describes how these shortcomings have been
addressed during the project, introducing modeling rules to
reduce the languages to a semantically unambiguous set, and
how design practices have been adopted to gradually achieve
a formal model of the system. Quantitative results are given
to show the effectiveness of the approach in terms of design
error reduction and detection.

2. ATP SYSTEMS
The role of a metro signaling system is to protect trains
by keeping vehicles a safe distance apart. Traditionally, the
traffic along metro tracks is managed by dividing each track
into segments called block sections or simply blocks, and en-
suring each train not to cross a given block section unless
the block is clear of other trains and it is safe to do so. Sig-
nals are placed at the beginning of each block to inform the
drivers about the status of the section that they are entering
and, depending on the line topology, also about the status

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301561476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of subsequent blocks. The meaning of each signal aspect can
be broadly represented by three pieces of information:

Authorized speed : the speed that is permitted in the block
that is being entered;

Target distance: the maximum distance that the train can
move while still being protected;

Target speed : the maximum speed that the train is permit-
ted to have over the target distance.

Target speed

Braking curve

Authorized speedSpeed

Target distance

Figure 1: Authorized speed, Target distance and
Target speed

Automatic Train Protection (ATP) systems are typically
embedded platforms that enforce the rules of signalling sys-
tems by adding an on-board automatic control over the
speed limit allowed to trains along the track, thereby ensur-
ing the safety of movement of the trains and the protection
of the line traffic independent of train operator actions.
From the architectural perspective, ATP systems are com-
posed of wayside equipment and carborne equipment: the
wayside equipment transmits information about the autho-
rized speed, the target distance and the target speed, accord-
ing to the aspect of a specific signal; the carborne equipment
receives this information, and determines the instantaneous
speed limit by computing the braking curve that the train
is required to follow in order to maintain safety.

2.1 SSC Metrô Rio ATP system
The SSC Metrô Rio system consists of wayside devices, com-
posed by an encoder and a transponder, that respectively
encode and transmit a telegram that contains the data to
be processed by the carborne equipment. The wayside de-
vices are positioned close to the actual signals, and the com-
bination of encoder and transponder is commonly referred
to as an information point. The carborne equipment is a
synchronous two out of two architecture1 that receives the
telegram data and performs the actual enforcement of train
speed.
Information managed by the carborne equipment concerns
the approach speed and distance for signals, but also other
information typical for a metro, such as the distance to the
next platform and speed reduction due to particular condi-
tions of the line. All of this information is managed by the
system as concurrent targets: for each restriction, multiple
braking curves are computed to determine the most restric-
tive speed.

1Redundant system employing duplication and comparison
of outputs for error detection, with no diversity.

Interaction with the driver is primarily via a touch-screen
panel which displays a speedometer with the current speed
and the active speed limit, and provides a set of buttons and
icons to let the driver control and monitor the system. For
example, one of the buttons is dedicated to the rain control
function, a feature which is particular to the geographical
context of the application. Since Rio de Janeiro is a tropi-
cal area, it encounters long periods of torrential rains. The
metro line is mostly exposed to the elements, while plat-
forms are mostly covered. During the rainy season the train
is subject to notable slip/slide phenomena under braking.
For this reason, in the case of rain, the system shall pro-
tect to a more restrictive braking curve when approaching
a platform to minimize spin/slide effects by reducing the
braking effort that is requested. The presence of rain is sig-
nalled by the driver through the appropriate button on the
touch-screen panel and the system reacts accordingly com-
bining this “rainy” state with the information received from
the information points.

3. MODELING GUIDELINES
Products traditionally provided by GETS, like any railway
signaling application developed for Europe, shall comply
with the CENELEC standards [1]. This is a set of norms
and methods to be used while implementing a product hav-
ing a determined safety-critical nature. The standards parti-
tion products into five different Safety Integrity Levels (SIL),
from SIL-0 to SIL-4, being level 0 for non safety-related soft-
ware and level 1 to 4 for increasingly safety-related software.
In order to develop SIL-4 products, such as the ones GETS
is traditionally providing, strong constraints are given by
the CENELEC standards both on the software quality and
on the process recommended practices. Although the SSC -
Metrô Rio product was not going to be delivered for Europe,
GETS decided to develop it with the objective of certifying
it according to the CENELEC norm, since these standards
remain the first reference for signaling applications and they
are widely accepted outside European markets.
The CENELEC EN50128 [1] norm, specific for software of
railway safety-critical systems, assesses that the code shall
be developed according to coding standards to ensure trace-
ability, structuring and readability of the code. Concerning
autocoding, the guidelines ask for a validated, or proven-in-
use translator. In absence of such a code generator, as is the
case of Simulink/Stateflow, the compliance of automatically
generated code to the guidelines is not different from that of
handwritten code. The approach investigated by GETS was
asking the generated code to obey the same rules about pro-
gramming style and language subset which are asked for the
hand-written code following the EN50128 guidelines. The
idea was that only following a suitable modeling style dur-
ing the model development it is possible to generate a code
that is compliant with the guidelines and that can be suc-
cessfully integrated with the existing one.

3.1 MAAB guidelines adaptation
The issue of modeling guidelines definition for the Simu-
link/Stateflow platform appeared to be already experienced
by the companies of the automotive sector, that, in an ef-
fort of defining a common language between different OEMs
and suppliers for models exchange and commissioning, came
to the definition of the MAAB Control Algorithm Model-
ing Guidelines (MathWorks Automotive Advisory Board)[2],



Rule ID Title Priority Restriction

db 0132 Transitions in Flowcharts SR M
jc 0521 Use of the return value from graphical functions R SR
na 0001 Bitwise Stateflow operators SR M
jc 0451 Use of unary minus on unsigned integers in Stateflow R M
na 0013 Comparison operation in Stateflow R M
db 0122 Stateflow and Simulink interface signals and parameters SR SR
db 0125 Scope of internal signals and local auxiliary variables SR M
jc 0491 Reuse of variables within a single Stateflow scope R M

Table 1: Some examples of restrictions to the MAAB guidelines

now a well established set of publicly available recommenda-
tions for modeling with Simulink/Stateflow. The guidelines,
published in 2001 and afterwards revisited in 2007, resulted
in being a good starting framework for GETS to define its
own modeling standard targeted for code generation.
MAAB rules are focused on the design of automotive sys-
tems, and proper customizing was needed in order to adopt
them in the signaling domain. The system and software
architectures, the required degree of dependability and the
certification processes of automotive and railway industries
are quite different, and, above all, the issue of code gener-
ation is not the main focus of the MAAB guidelines, par-
ticularly oriented to model desing. It is with this purpose
that MAAB rates the recommendations with a priority la-
bel (Recommended (R), Strongly Recommended (SR) and
Mandatory (M)), issuing the level of importance of the rule.
Great part of the guidelines needed some priority restric-
tions in order to ensure proper code synthesis.
The software of an on-board equipment of an ATP system,
such as the SSC - Metrô Rio product, is characterized by the
extensive usage of control modes logic and message analy-
sis algorithms. These are all features that can be properly
represented through state machines, and hence through dis-
crete Stateflow models. Due to this reason, in the context
of the project, only Stateflow has been adopted as specifica-
tion language, while Simulink was only used as a simulation
framework to allow interaction among Stateflow charts.
Indeed, it has been experimented that application of the
MAAB rules to Stateflow models automatically implies the
compliance of the generated code to some EN50128 or com-
pany code guidelines. For such rules the priority has been
increased (see Table 1). For example, rule db 0125 states
that every local data in a Stateflow model shall not be de-
fined at machine (i.e., top-model) level. Since every local
data that is defined at machine level is generated as global
data, this rule has to be set as mandatory: global data is
forbidden for SIL-4 applications. Another example is the
rule jc 0451 which regulates the usage of unary minus on un-
signed integers. Unary minus shall be forbidden for unsigned
integers to avoid possible overflow errors. More details on
the MAAB guidelines adaptation to the railway signaling
domain are given in a previous work [5].

3.2 Stateflow semantics restrictions
Stateflow is a graphical tool implementing a variant of Harel’s
hierarchical statecharts [9], normally called charts accord-
ing to the Stateflow taxonomy. The complex semantics of
Stateflow is not formally based, though research has been
performed to define an operational semantics [8] and a de-
notational semantics [7] for a Stateflow subset. Along with

the development of the SSC - Metrô Rio project, in order to
ease an unambiguous interpretation of Stateflow models, co-
herent with the automatically generated code, we further ex-
tended the MAAB guidelines with a set of rules particularly
oriented to restrain the Stateflow language to a semantically
unambiguous subset. Indeed, the semantics of Stateflow al-
lows modeling constructs which might be harmful from the
point of view of model analysis and code generation. Below
are reported three examples of additional guidelines together
with a detailed explanation of their role.

ge s 01: Events shall not be used in Stateflow diagrams
After the generation of an event, the control is returned
to the state machine that broadcasted the event, and
at code generation level this implies a recursive call
to the function implementing the state machine. This
might lead to the risk of an infinite recursion call, stack
overflow or anyway to state-space explosion problems,
with the well known drawbacks from the formal ver-
ification and analysis point of view. For this reason
events are forbidden by the adopted modeling guide-
lines and they are simulated through variable assign-
ments as depicted in Fig. 2. This approach preserves
the sequential execution of the code, while allowing
logical event implementation (each change on the vari-
able value corresponds to an event).

Not Recommended

Recommended

/event event

/data_event = !data_event
[data_event != data_event_old]/...

data_event_old = data_event

Figure 2: Events can be avoided through proper
variable assignments

ge S 02: States and junctions shall not be used jointly
The Stateflow language allows defining transitions be-
tween states and junctions. These are objects that
have quite a different operational semantics: at each
simulation step, states belonging to a single chart are
mutually exclusive, while more than one junction can
be traversed during the same simulation step. The be-
havior discrepancy between these two objects might



bring to improper combined usage. One of the well
known possible hazards is backtracking without undo, a
problem that has been explored in [11] and consisting
in the possibility of traversing a path made of junc-
tions, possibly assigning values to variables, and after-
wards backtracking without restoring variable values.
This problem is propagated also at code level. For this
reason combined usage of states and junctions is for-
bidden, and junction are allowed only inside sequential
function objects. Fig. 3 shows how an improper mod-
eling can be correctly translated into an equivalent, yet
safer, representation.

Not Recommended Recommended

[guard_a]

[guard_b]

[guard_d]

[guard_c]

[guard_a &&... 
guard_b]

[guard_a &&... 
guard_d]

[guard_a &&...
 guard_c]

Figure 3: State/Junctions transitions can be avoided
through proper modeling solutions

ge S 03: Outgoing transitions shall have mutually exclusive
conditions on their guards
One of the peculiar characteristics of the Stateflow se-
mantics is the use of the clockwise rule to evaluate the
firing of the transitions from the same state [8]. Tran-
sitions from the same state are ordered first on the
form of their guards: transitions guarded by an event
are evaluated before those guarded only by a condi-
tion, and unguarded transitions come last. Remaining
unordered transitions from the state (i.e., transitions
that have the same form of the guards) are ordered
by their graphical appearance: the first transition is
the one whose edge starts closest to the upper left cor-
ner of the source state, and the others follow clock-
wise. This implies that transitions naturally perceived
as non-deterministic by the user, and interpreted as
non-deterministic in other formal statechart languages
such as Statemate, are actually deterministic. For this
reason we ask to make this determinism explicit by
using mutually exclusive condition on guards of tran-
sitions outgoing from the same state.

Other rules not detailed here have been given in order to
further constrain the Stateflow semantics along the lines of
the approach shown by Scaife et al. [11] for translating a
subset of Stateflow into the Lustre formal language.

4. THE SSC - METRÔ RIO MODEL
On the one hand, formal modeling requires the definition
of a formal language, and this has been addressed by re-
stricting the Simulink/Stateflow language to a semantically
unambiguous subset through modeling guidelines. On the
other hand, when a large requirements set is involved in for-
mal modeling, also the architecture of the model comes to
be a fundamental issue. Structuring the model can help in
clarifying which are the components of the system and how

they are interconnected, bridging the gap between require-
ments definition and component design. Furthermore, if one
is expecting to auto-generate code from the model, its struc-
ture has to take into account also the software architecture:
an effort has to be made to create formal models having a
structure that makes sense also in terms of the architecture
of the software system.

4.1 Architecture Definition
In the context of the project, we found useful to first rep-
resent the high-level software architecture through a UML
component diagram. UML component diagrams focus on
the interfaces and dependencies of the functional units. Each
component is basically defined by a set of implemented inter-
faces, a set of required interfaces and a set of dependencies.

HMI Board Drivers

HMI Manager

Operation Mode 
Manager

Control

Speed Analyzer
Information 

Point Manager

Receiver Tachometer Brake

Brake 
Manager

Speed Limit 
Manager

SSC - Metro Rio
<<component>>

<<component>><<component>>

<<component>>

<<component>>

<<component>>

<<component>>
<<component>>

<<component>>

<<component>>

<<component>><<component>><<component>>

Display
Information

Driver
Command

Control
Command

Control
Telegram Data

Control
Data

Speed
Telegram Data

Telegram Data Tachometer Data

Target
 Data

Brake Request

Brake Command

Board Info
Board Command

Figure 4: Simplified component diagram

The simplified component diagram of the SSC - Metrô Rio
on-board application is shown in Fig. 4. A centralized soft-
ware architecture has been chosen, with the Operation Mode
Manager enabling/disabling all the other components ac-
cording to the current state of the system, and managing
downgraded and faulty situations. The Information Point
Manager and the Human Machine Interface (HMI) Manager
are the components taking care of controlling the system
state according to the information coming from the external
interfaces. When new telegrams are received they are first
processed by the Information Point Manager to ensure data
consistency, and afterwards forwarded to the internal com-
ponents. The HMI Manager implements all the function-
alities related to the interaction with the driver, controlling
the touchscreen according to the state of the other functional
units. A set of Speed Analyzer components is defined which
process the information coming from the Information Point
Manager and translate them into different authorized speed
limits, target speed and distances. All these data are col-
lected by the Speed Limit Manager, computing the braking
curves of the different targets and determining the current
speed limit. Control components are in charge of modifying
the behavior of the Speed Analyzers according to particular
information coming from both the HMI Manager and the
Information Point Manager. In case of dangerous behav-



ior acted by the driver (i.e., speed limit violation) or system
fault, the Brake Manager is in charge of commanding brakes
according to the controls coming from the other functional
units. In the diagram, the external components represent
the software drivers that interface the system to external
devices, such as the tachometer and the braking command
device.

SSC - MetrÔ Rio
Architecture 

HMI Manager Design HMI Touchscreen

SSC- MetrÔ Rio Context

Operation
Mode

Manager

Controls

Speed 
AnalyzersHMI

Manager

Information
Point 

Manager

Speed 
Limit

Manager

Brake
Manager

Receiver

Tachometer

HMI 
Commands

HMI Display
Information

Brake

Board 
Information

Board 
Commands

Figure 5: The multiple level hierarchical model

4.2 Derivation Approach
In order to properly formalize this kind of architecture thr-
ough Simulink/Stateflow, the chosen strategy was to repre-
sent the system through a multiple-level hierarchical model
(see Fig. 5). The different levels are intended for differ-
ent development stages, from a more abstract to a more
detailed view. A first level is defining the context, which
means the interfaces with the environment in terms of in-
put/output data. Starting from the component diagram,
this level has been derived considering the boundary ports
and mapping them into signals entering or exiting the Simu-
link blocks. This approach allowed us defining the borders
of the software system, which can be treated as a black box
completely defined by its input/output signals. As part of
this model we introduced other blocks simulating the actual
interfaces (tachometer data, touch screen buttons, telegram
data, etc.), to perform interactive testing of the model.
A second level represents the internal software architecture

in terms of interacting functional units modeled through Sta-
teflow charts. For each one of the components of the original
diagram, a Stateflow chart has been defined having the same
input/output interfaces in terms of variables: each required
interface becomes a set of input variables, while each im-
plemented interface becomes a set of output variable. This
level focuses on the relationships between functional units.
A third level is actually the design level of the single Sta-
teflow charts, each of them being structured into parallel
state machines formally modeling the system functional re-
quirements. In order to derive such a formal model from
the system requirements written in natural language, we
first decomposed them into mutually exclusive sets of unit
requirements, to identify the requirements apportioned to
each single Stateflow chart. For example, the system func-
tional requirement concerning the rain control functionality
(see Section 2.1) says:
When the rain function button (CH) is pressed and released
within t rain function milliseconds and the train is stand-
ing, the icon of the rain function button shall be lighted on
and the target speed when approaching the platform shall be
reduced to 40 km/h if the train is positioned outdoor.
The requirement is decomposed as reported in Table 2.

Requirement Module

1 If the rain function button (CH)
is pressed and released within
t rain function milliseconds, the
rain event shall be raised

HMI Manager

2 If the rain event is raised and
the train is standing, the rain
function shall be activated

Platform Control

3 If the rain function is active and
the train is positioned outdoor,
the target speed shall be reduced
to 40 km/h

Platform Speed
Analyzer

4 If the rain function is active, the
icon of the rain function button
shall be lighted on

HMI Manager

Table 2: Unit requirements decomposition

Figure 6: Example of unit requirement formalization

The first and last unit requirements in the table are ap-
portioned to the HMI Manager, since this component is
intended to manage any interaction with the driver. The
second requirement is apportioned to the Platform Control,
which attends to manage if the rain function shall be acti-
vated or not, and sets the status of the function itself. The
third requirement (see Fig. 6 for its formal representation) is
apportioned to the Platform Speed Analyzer, which is actu-
ally computing the target data for the braking curve, when
this is required by the telegram data, and modifies the tar-



get speed depending on the status of the rain function and
on the position (outdoor/indoor) of the train.

4.3 Results and lesson learned
Following the approach exemplified, we came to the defini-
tion of 438 unit requirements that led to the representation
of 13 modules and about 150 state machines in total. The
C code generated through RTW Embedded Coder resulted
in 14 source files, one for each chart and one for units inte-
gration, issuing approximately 120K lines of code. Thanks
to the modeling rules applied, the code synthesized resulted
compliant with the EN50128 guidelines, with an acceptable
degree of readability and traceability. This is actually a de-
sirable quality not only from the certification point of view,
but also from the point of view of debugging. Indeed, dur-
ing development we found out that not all issues could be
solved at simulation level. For example, the communication
protocols with the HMI and with the telegram processing
board were not part of our simulation, and direct debugging
on the target was needed in order to solve problems raised
by the real time constraints of the communication.
Verification activities have been performed on both the model
and the code according to the approach based on Model
Based Testing and Abstract Interpretation explained in a
previous work [6]. Table 3 compares the results of the veri-
fication activities on SSC Metrô Rio in terms of bugs found
and time spent to detect and correct the bugs, with the re-
sults of these activities on the SSC BL1 product, a previous
ATP project based on model based development where only
the MAAB guidelines with proper restrictions were used.
The additional rules constraining the Stateflow semantics
introduced for SSC Metrô Rio led to a notable reduction of
bugs, while the well defined architecture derived from the
novel design approach has allowed us to detect the errors in
shorter time, even though, on the other hand, has increased
the number of modules and the generated LOC: structuring
and separating concerns necessarily affect the software size.
If we have to compare the overall development cost for the
SSC Metrô Rio project with a project based on hand-crafted
code, our experience tells that a developer spends 30% of the
time more on modeling than on coding. Nevertheless, this
greater effort is balanced by the fact that notable cost re-
ductions are achieved in terms of verification activities (with
a time reduction of about 70%, see [6]).

Project #Modules LOC #Bugs Man/H

SSC Metrô Rio 13 120K 33 16
SSC BL1Plus 12 40K 114 105

Table 3: Bug detection and correction costs for com-
parable projects which required a modeling cost of
approximately 4 man/months

5. CONCLUSION
This paper presented the experience of a metro signaling
manufacturer in employing formal model based technologies
to the development of the Automatic Train Protection sys-
tem of Metrô Rio. The Simulink/Stateflow tool-suite have
been used to model and generate the code of the entire appli-
cation software. The certification issues related to the tool-
suite and the formal weakness of the languages that were
used have been overcome by restricting the languages to a

semantically unambiguous set and by introducing a multi-
ple level architecture approach for deriving a formal model
for the system. When compared with previous model based
projects where the approach was not applied, the results in
terms of number of errors deteced and in terms of time spent
for correcting them are encouraging. Nonetheless, the strat-
egy still needs improvements to ensure the consistency of
the different models at the different derivation levels, where
heterogeneous graphical notations are used.
We are currently exploring techniques to complete the for-
mal development with formal verification. Specifically, so-
lutions are under study with Simulink Design Verifier, but
also with other freeware tools such as SPIN and NuSMV.

6. REFERENCES
[1] European Committee for Electrotechnical

Standardization, CENELEC EN50128, Railway
Applications - Software for Railway Control and
Protection Systems, 1997.

[2] Mathworks Automotive Advisory Board (MAAB),
Control Algorithm Modeling Guidelines Using Matlab,
Simulink and Stateflow, Version 2.0, 2007.

[3] S. Bacherini, A. Fantechi, M. Tempestini, and
N. Zingoni. A story about formal methods adoption
by a railway signaling manufacturer. Proceedings of
FM 2006, LNCS, 4025, 2006.

[4] A. Faivre and P. Benoit. Safety critical software of
meteor developed with the B formal method and vital
coded processor. In Proceedings of WCRR99, pages
84–89, 1999.

[5] A. Ferrari, A. Fantechi, S. Bacherini, and N. Zingoni.
Modeling guidelines for code generation in the railway
signaling context. In Proceedings of 1st NASA Formal
Methods Symphosium. NASA, April 2009.

[6] D. Grasso, A. Fantechi, and A. Ferrari. Model based
testing and abstract interpretation in the railway
signaling context. In Proceedings of the 3rd
International Conference on Software Testing,
Verification and Validation (to appear), 2010.

[7] G. Hamon. A denotational semantics for stateflow. In
Proceedings of the 5th ACM international conference
on Embedded software, pages 164–172, 2005.

[8] G. Hamon and J. Rushby. An operational semantics
for stateflow. STTT, 9(5-6):477–456, 2007.

[9] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[10] M. Leuschel, J. Falampin, F. Fabian, and D. Plagge.
Automated property verification for large scale B
models. Proceedings of FM 2009, LNCS,
5850:810–814, 2009.

[11] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and
F. Maraninchi. Defining and translating a safe subset
of Simulink/Stateflow into Lustre. In Proceedings of
the 4th ACM international conference on Embedded
software, pages 259–268, 2004.

[12] J. Woodcock, P. G. Larsen, J. Bicarregui, and
J. Fitzgerald. Formal methods: Practice and
experience. ACM Computing Surveys, 5(N):1–39, June
2009.


