29 research outputs found

    Vacancy-mediated dopant diffusion activation enthalpies for germanium

    Get PDF
    Electronic structure calculations are used to predict the activation enthalpies of diffusion for a range of impurity atoms (aluminium, gallium, indium, silicon, tin, phosphorus, arsenic, and antimony) in germanium. Consistent with experimental studies, all the impurity atoms considered diffuse via their interaction with vacancies. Overall, the calculated diffusion activation enthalpies are in good agreement with the experimental results, with the exception of indium, where the most recent experimental study suggests a significantly higher activation enthalpy. Here, we predict that indium diffuses with an activation enthalpy of 2.79 eV, essentially the same as the value determined by early radiotracer studies

    First 230 GHz VLBI Fringes on 3C 279 using the APEX Telescope

    Full text link
    We report about a 230 GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). We installed VLBI equipment and measured the APEX station position to 1 cm accuracy (1 sigma). We then observed 3C 279 on 2012 May 7 in a 5 hour 230 GHz VLBI track with baseline lengths of 2800 MÎť\lambda to 7200 MÎť\lambda and a finest fringe spacing of 28.6 micro-arcseconds. Fringes were detected on all baselines with SNRs of 12 to 55 in 420 s. The correlated flux density on the longest baseline was ~0.3 Jy/beam, out of a total flux density of 19.8 Jy. Visibility data suggest an emission region <38 uas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 10^10 K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ~38 uas. With APEX the angular resolution of 230 GHz VLBI improves to 28.6 uas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40 uas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.Comment: accepted for publication in A&

    Design of cryogenic phased array feed for 4-8 GHz

    Get PDF
    We describe the design and architecture of PHAROS2, a cryogenically cooled 4-8 GHz Phased Array Feed (PAF) demonstrator with a digital beamformer for radio astronomy application. The instrument will be capable of synthesizing four independent single-polarization beams by combining 24 active elements of an array of Vivaldi antennas. PHAROS2, the upgrade of PHAROS (PHased Arrays for Reflector Observing Systems), features: a) commercial cryogenic LNAs with state-of-the-art performance, b) a “Warm Section” for signal filtering, conditioning and single downconversion to select a ≈275 MHz Intermediate Frequency (IF) bandwidth within the 4-8 GHz Radio Frequency (RF) band, c) an IF signal transportation by analog WDM (Wavelength Division Mutiplexing) fiber-optic link, and d) a FPGA-based Italian Tile Processing Module (iTPM) digital backend.peer-reviewe

    BRAND: A very wide-band receiver for the EVN

    No full text
    BRAND stands for BRoad bAND EVN, a project to build a prototype primary focus receiver with the very wide frequency range from 1.5 GHz to 15.5 GHz, to investigate secondary focus solutions, and to make a survey of the EVN telescopes in order to set the stage for equipping all EVN stations with such a receiver as soon as possible. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730562 and is a Joint Research Activity (JRA) in the RadioNet programme. We present the motivation, aims, scope and status of the project which was started on January 1st, 2017
    corecore