118 research outputs found

    Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50

    Full text link
    Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c2^2 mass dark matter. We present new constraints for sub-GeV/c2^2 dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12306 ±\pm 184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c2^2. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.63.6 GeV/c2^2.Comment: 7 pages, 3 figure

    Search for dark matter annual modulation with DarkSide-50

    Full text link
    Dark matter induced event rate in an Earth-based detector is predicted to show an annual modulation as a result of the Earth's orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above 40 eVee40~{\rm eV_{ee}}, the lowest threshold ever achieved in such a search.Comment: 8 pages, 4 figure

    Search for dark matter particle interactions with electron final states with DarkSide-50

    Full text link
    We present a search for dark matter particles with sub-GeV/c2c^2 masses whose interactions have final state electrons using the DarkSide-50 experiment's (12306 ±\pm 184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σˉe\bar{\sigma}_e, the axioelectric coupling constant gAeg_{Ae}, and the dark photon kinetic mixing parameter κ\kappa. We also set the first dark matter direct-detection constraints on the mixing angle Ue42\left|U_{e4}\right|^2 for keV sterile neutrinos.Comment: 6 pages, 2 figure

    Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches

    Get PDF
    The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: 36Ar , 38Ar , and 40Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods

    Directionality for nuclear recoils in a LAr TPC

    Get PDF
    In the direct searches for Weakly Interacting Massive Particles (WIMPs) as Dark Matter candidates, the sensitivity of the detector to the incom- ing particle direction could provide a smoking gun signature for an interesting event. The SCENE collaboration firstly suggested the possible directional de- pendence of a dual-phase argon Time Projection Chamber through the columnar recombination effect. The Recoil Directionality project (ReD) within the Global Argon Dark Matter Collaboration aims to characterize the light and charge re- sponse of a liquid Argon dual-phase TPC to neutron-induced nuclear recoils to probe for the hint by SCENE. In this work, the directional sensitivity of the de- tector in the energy range of interest for WIMPs (20-100 keV) is investigated with a data-driven analysis involving a Machine Learning algorithm

    DarkSide status and prospects

    Get PDF
    Sem informaçãoDarkSide uses a dual-phase Liquid Argon Time Projection Chamber to search for WIMP dark matter. The current detector, DarkSide-50, is running since mid 2015 with a target of 50 kg of Argon from an underground source. Here it is presented the latest results of searches of WIMP-nucleus interactions, with WIMP masses in the GeV-TeV range, and of WIMP-electron interactions, in the sub-GeV mass range. The future of DarkSide with a new generation experiment, involving a global collaboration from all the current Argon based experiments, is presented.422-315Sem informaçãoSem informaçãoSem informaçã

    Directionality of nuclear recoils in a liquid argon time projection chamber

    Full text link
    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.

    DarkSide-50 532-day dark matter search with low-radioactivity argon

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe DarkSide-50 direct-detection dark matter experiment is a dual-phase argon time projection chamber operating at Laboratori Nazionali del Gran Sasso. This paper reports on the blind analysis of a (16 660 +/- 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We find no events in the dark matter selection box and set a 90% C. L. upper limit on the dark matter-nucleon spin-independent cross section of 1.14 x 10(-44) cm(2) (3.78 x 10(-44) cm(2), 3.43 x 10(-43) cm(2)) for a WIMP mass of 100 GeV/c(2) (1 TeV/c(2), 10 TeV/c(2)).9810117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2016/09084-0Agências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Constraints on sub-GeV dark-matter-electron scattering from the DarkSide-50 experiment

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOWe present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matterelectron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c(2).1211117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2016/09084-0Agências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig
    corecore