8 research outputs found

    Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators

    Get PDF
    Microalgae cultivation has been receiving increasing interest in wastewater remediation due to their ability to assimilate nutrients present in wastewater streams. In this respect, cultivating microalgae in membrane photobioreactors (MPBRs) allows decoupling the solid retention time (SRT) from the hydraulic retention time (HRT), which enables to increase the nutrient load to the photobioreactors (PBRs) while avoiding the wash out of the microalgae biomass. The reduction of the PBR light path from 25 to 10 cm increased the nitrogen and phosphorus recovery rates, microalgae biomass productivity and photosynthetic efficiency by 150, 103, 194 and 67%, respectively. The areal biomass productivity (aBP) also increased when the light path was reduced, reflecting the better use of light in the 10-cm MPBR plant. The capital and operating operational expenditures (CAPEX and OPEX) of the 10-cm MPBR plant were also reduced by 27 and 49%, respectively. Discharge limits were met when the 10-cm MPBR plant was operated at SRTs of 3-4.5 d and HRTs of 1.25-1.5 d. At these SRT/HRT ranges, the process could be operated without a high fouling propensity with gross permeate flux (J20) of 15 LMH and specific gas demand (SGDp) between 16 and 20 Nm3air·m−3permeate, which highlights the potential of membrane filtration in MPBRs. When the continuous operation of the MPBR plant was evaluated, an optical density of 680 nm (OD680) and soluble chemical oxygen demand (sCOD) were found to be good indicators of microalgae cell and algal organic matter (AOM) concentrations, while dissolved oxygen appeared to be directly related to MPBR performance. Nitrite and nitrate (NOx) concentration and the soluble chemical oxygen demand:volatile suspended solids ratio (sCOD:VSS) were used as indicators of nitrifying bacteria activity and the stress on the culture, respectively. These parameters were inversely related to nitrogen recovery rates and biomass productivity and could thus help to prevent possible culture deterioration

    Wastewater nutrient removal in a mixed microalgae bacteria culture: effect of light and temperature on the microalgae bacteria competition

    Full text link
    [EN] The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae¿bacteria culture and their effects on the microalgae¿bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125¿µE¿m¿2¿s¿1. Other two experiments were carried out at variable temperatures: 23¿±¿2°C and 28¿±¿2°C at light intensity of 85 and 125¿µE¿m¿2¿s¿1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85¿125¿µE¿m¿2¿s¿1 and 22¿±¿1°C. In the microalgae¿bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae¿bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5¿±¿9.6, 80.3¿±¿6.5 and 94.3¿±¿7.9¿mgVSS¿L¿1¿d¿1 for a light intensity of 40, 85 and 125¿µE¿m¿2¿s¿1, respectivelyThis research work was possible because of Projects CTM2011-28595-C02-01 and CTM2011-28595-C02-02 [funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and the Generalitat Valenciana GVA-ACOMP2013/203]. This research was also supported by the Spanish Ministry of Education, Culture and Sport via a pre doctoral FPU fellowship to the first author [FPU14/05082].Gonzalez-Camejo, J.; Barat, R.; Pachés Giner, MAV.; Murgui Mezquita, M.; Seco Torrecillas, A.; Ferrer, J. (2018). Wastewater nutrient removal in a mixed microalgae bacteria culture: effect of light and temperature on the microalgae bacteria competition. Environmental Technology. 39(4):503-515. https://doi.org/10.1080/09593330.2017.1305001S503515394Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Huang, Z., Ong, S. L., & Ng, H. Y. (2011). Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 45(2), 705-713. doi:10.1016/j.watres.2010.08.035Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001Rawat, I., Bhola, V., Kumar, R. R., & Bux, F. (2013). Improving the feasibility of producing biofuels from microalgae using wastewater. Environmental Technology, 34(13-14), 1765-1775. doi:10.1080/09593330.2013.826287Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A., & Steyer, J.-P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207-214. doi:10.1016/j.biortech.2010.06.154Milledge, J. J. (2010). Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31-41. doi:10.1007/s11157-010-9214-7Posadas, E., García-Encina, P.-A., Soltau, A., Domínguez, A., Díaz, I., & Muñoz, R. (2013). Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresource Technology, 139, 50-58. doi:10.1016/j.biortech.2013.04.008Podevin, M., De Francisci, D., Holdt, S. L., & Angelidaki, I. (2014). Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. Journal of Applied Phycology, 27(4), 1415-1423. doi:10.1007/s10811-014-0468-2Meseck, S. L., Smith, B. C., Wikfors, G. H., Alix, J. H., & Kapareiko, D. (2006). Nutrient interactions between phytoplankton and bacterioplankton under different carbon dioxide regimes. Journal of Applied Phycology, 19(3), 229-237. doi:10.1007/s10811-006-9128-5Risgaard-Petersen, N., Nicolaisen, M. H., Revsbech, N. P., & Lomstein, B. A. (2004). Competition between Ammonia-Oxidizing Bacteria and Benthic Microalgae. Applied and Environmental Microbiology, 70(9), 5528-5537. doi:10.1128/aem.70.9.5528-5537.2004Tiquia-Arashiro, S. M., & Mormile, M. (2013). Sustainable technologies: bioenergy and biofuel from biowaste and biomass. Environmental Technology, 34(13-14), 1637-1638. doi:10.1080/09593330.2013.834162Jordan, B. R. (1996). The Effects of Ultraviolet-B Radiation on Plants: A Molecular Perspective. Advances in Botanical Research, 97-162. doi:10.1016/s0065-2296(08)60057-9Znad, H., Naderi, G., Ang, H. M., & Tade, M. O. (2012). CO2 Biomitigation and Biofuel Production Using Microalgae: Photobioreactors Developments and Future Directions. Advances in Chemical Engineering. doi:10.5772/32568Martínez, M. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263-272. doi:10.1016/s0960-8524(99)00121-2Xin, L., Hong-ying, H., & Yu-ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102. doi:10.1016/j.biortech.2010.10.055Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180Reynolds, C. S. (2006). The Ecology of Phytoplankton. doi:10.1017/cbo9780511542145Küster, E., Dorusch, F., & Altenburger, R. (2005). EFFECTS OF HYDROGEN SULFIDE TO VIBRIO FISCHERI, SCENEDESMUS VACUOLATUS, AND DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 24(10), 2621. doi:10.1897/04-546r.1Park, J., Jin, H.-F., Lim, B.-R., Park, K.-Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649-8657. doi:10.1016/j.biortech.2010.06.142McGinn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., MacQuarrie, S. P., Black, F. J., … O’Leary, S. J. B. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1(2), 155-165. doi:10.1016/j.algal.2012.05.001Mara, D. D., & Feachem, R. G. A. (2003). Unitary environmental classification of water- and excreta-related communicable diseases. Handbook of Water and Wastewater Microbiology, 185-192. doi:10.1016/b978-012470100-7/50012-1Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. doi:10.1016/s0015-3796(17)30778-3Laliberté, G., Lessard, P., de la Noüe, J., & Sylvestre, S. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology, 59(2-3), 227-233. doi:10.1016/s0960-8524(96)00144-7Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003Xin, L., Hong-ying, H., Ke, G., & Jia, Y. (2010). Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering, 36(4), 379-381. doi:10.1016/j.ecoleng.2009.11.003Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., … Ruan, R. (2009). Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. doi:10.1007/s12010-009-8866-7Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. doi:10.1016/j.biortech.2014.01.025Sarat Chandra, T., Deepak, R. S., Maneesh Kumar, M., Mukherji, S., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2016). Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: Effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresource Technology, 207, 430-439. doi:10.1016/j.biortech.2016.01.044Krustok, I., Odlare, M., Truu, J., & Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243. doi:10.1016/j.biortech.2015.12.020Chen, X., Goh, Q. Y., Tan, W., Hossain, I., Chen, W. N., & Lau, R. (2011). Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresource Technology, 102(10), 6005-6012. doi:10.1016/j.biortech.2011.02.061Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 43(17), 4207-4213. doi:10.1016/j.watres.2009.06.011Cabello, J., Toledo-Cervantes, A., Sánchez, L., Revah, S., & Morales, M. (2015). Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technology, 181, 128-135. doi:10.1016/j.biortech.2015.01.034Zhu, W., Wan, L., & Zhao, L. (2010). Effect of nutrient level on phytoplankton community structure in different water bodies. Journal of Environmental Sciences, 22(1), 32-39. doi:10.1016/s1001-0742(09)60071-1Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set. Systematic and Applied Microbiology, 22(3), 434-444. doi:10.1016/s0723-2020(99)80053-8Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K.-H., & Wagner, M. (2001). In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and Environmental Microbiology, 67(11), 5273-5284. doi:10.1128/aem.67.11.5273-5284.2001analysis of nitrifying bacteria in sewage treatment plants. (1996). Water Science and Technology, 34(1-2). doi:10.1016/0273-1223(96)00514-

    COVID-19 outbreaks in a transmission control scenario: challenges posed by social and leisure activities, and for workers in vulnerable conditions, Spain, early summer 2020

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 community-wide transmission declined in Spain by early May 2020, being replaced by outbreaks and sporadic cases. From mid-June to 2 August, excluding single household outbreaks, 673 outbreaks were notified nationally, 551 active (>6,200 cases) at the time. More than half of these outbreaks and cases coincided with: (i) social (family/friends’ gatherings or leisure venues) and (ii) occupational (mainly involving workers in vulnerable conditions) settings. Control measures were accordingly applied

    Aplicacion de la PAAF en el diagnostico de masas mediastinicas. Correlación cito-histologica

    No full text
    Fine needle aspiration (FNA) is found to be a useful and non invasive technique in the presurgical diagnosis of intrathoracic masses. In the present study we report our findings from a total of 33 mediastinal aspiration punctures, performed over the past 24 months. In 24 of the 33 puntures, the lesion was either previously biopsied or surgically removed, which allowed for the corresponding cytohistological correlations. The cytological diagnosis demonstrated 12 cases of malignancy, 2 cases of benign lesions and 5 cases of negative tumours. It was possible to establish the cellular lineage in only 8 cases without specifying the benignity or malignancy of the lesion (2 neural tumours, 2 thymomas, 2 spindle cell mesenchymall tumours and 2 with a lymphoproliferative process), while 6 cases were insufficient for diagnosis. The sensitivity and specificity obtained using this diagnostic methodology was 79% and 100% respectively, where the diagnostic accuracy was 83%. The positive and negative predictive value was 100% and 53% respectively. In 2 of the 9 cases that were not operated on, the cytological diagnosis was benign, showing 2 brochogenic cysts that were evacuated during the process thus resolving the situation. Our findings and the adequate cytohistological correlation obtained confirm the effectiveness of FNA in the diagnosis of mediastinal masses
    corecore