1,826 research outputs found

    Annual and semiannual variations of vertical total electron content during high solar activity based on GPS observations

    Get PDF
    Annual, semiannual and seasonal variations of the Vertical Total Electron Content (VTEC) have been investigated during high solar activity in 2000. In this work we use Global IGS VTEC maps and Principal Component Analysis to study spatial and temporal ionospheric variability. The behavior of VTEC variations at two-hour periods, at noon and at night is analyzed. Particular characteristics associated with each period and the geomagnetic regions are highlighted. <br><br> The variations at night are smaller than those obtained at noon. At noon it is possible to see patterns of the seasonal variation at high latitude, and patterns of the semiannual anomaly at low latitudes with a slow decrease towards mid latitudes. At night there is no evidence of seasonal or annual anomaly for any region, but it was possible to see the semiannual anomaly at low latitudes with a sudden decrease towards mid latitudes. In general, the semiannual behavior shows March–April equinox at least 40 % higher than September one. Similarities and differences are analyzed also with regard to the same analysis done for a period of low solar activity

    Quantum dynamics of a vibrational mode of a membrane within an optical cavity

    Full text link
    Optomechanical systems are a promising candidate for the implementation of quantum interfaces for storing and redistributing quantum information. Here we focus on the case of a high-finesse optical cavity with a thin vibrating semitransparent membrane in the middle. We show that robust and stationary optomechanical entanglement could be achieved in the system, even in the presence of nonnegligible optical absorption in the membrane. We also present some preliminary experimental data showing radiation-pressure induced optical bistability.Comment: 6 pages, 2 figures. Work presented at the conference QCMC 2010 held on 19-23 July 2010 at the University of Queensland, Brisbane, Australi

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    The inelastic Takahashi hard-rod gas

    Full text link
    We study a one-dimensional fluid of hard-rods interacting each other via binary inelastic collisions and a short ranged square-well potential. Upon tuning the depth and the sign of the well, we investigate the interplay between dissipation and cohesive or repulsive forces. Molecular dynamics simulations of the cooling regime indicate that the presence of this simple interparticle interaction is sufficient to significantly modify the energy dissipation rates expected by the Haff's law for the free cooling. The simplicity of the model makes it amenable to an analytical approach based on the Boltzmann-Enskog transport equation which allows deriving the behaviour of the granular temperature. Furthermore, in the elastic limit, the model can be solved exactly to provide a full thermodynamic description. A meaningful theoretical approximation explaining the properties of the inelastic system in interaction with a thermal bath can be directly extrapolated from the properties of the corresponding elastic system, upon a proper re-definition of the relevant observables. Simulation results both in the cooling and driven regime can be fairly interpreted according to our theoretical approach and compare rather well to our predictions.Comment: 14 pages RevTex, 9 eps figure

    Optomechanically induced transparency in membrane-in-the-middle setup at room temperature

    Full text link
    We demonstrate the analogue of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-P\'erot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.Comment: 5 pages, 4 figure

    Optomechanical sideband cooling of a thin membrane within a cavity

    Full text link
    We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.Comment: 15 pages, 7 figure

    Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy

    Get PDF
    The purpose of this study is to validate a Jacobian-based iterative method for real-time localization of magnetically controlled endoscopic capsules. The proposed approach applies finite-element solutions to the magnetic field problem and least-squares interpolations to obtain closed-form and fast estimates of the magnetic field. By defining a closed-form expression for the Jacobian of the magnetic field relative to changes in the capsule pose, we are able to obtain an iterative localization at a faster computational time when compared with prior works, without suffering from the inaccuracies stemming from dipole assumptions. This new algorithm can be used in conjunction with an absolute localization technique that provides initialization values at a slower refresh rate. The proposed approach was assessed via simulation and experimental trials, adopting a wireless capsule equipped with a permanent magnet, six magnetic field sensors, and an inertial measurement unit. The overall refresh rate, including sensor data acquisition and wireless communication was 7 ms, thus enabling closed-loop control strategies for magnetic manipulation running faster than 100 Hz. The average localization error, expressed in cylindrical coordinates was below 7 mm in both the radial and axial components and 5° in the azimuthal component. The average error for the capsule orientation angles, obtained by fusing gyroscope and inclinometer measurements, was below 5°

    SMAC — A Modular Open Source Architecture for Medical Capsule Robots

    Get PDF
    The field of Medical Capsule Robots (MCRs) is gaining momentum in the robotics community, with applications spanning from abdominal surgery to gastrointestinal (GI) endoscopy. MCRs are miniature multifunctional devices usually constrained in both size and on-board power supply. The design process for MCRs is time consuming and resource intensive, as it involves the development of custom hardware and software components. In this work, we present the STORM Lab Modular Architecture for Capsules (SMAC), a modular open source architecture for MCRs aiming to provide the MCRs research community with a tool for shortening the design and development time for capsule robots. The SMAC platform consists of both hardware modules and firmware libraries that can be used for developing MCRs. In particular, the SMAC modules are miniature boards of uniform diameter (i.e., 9.8 mm) that are able to fulfill five different functions: signal coordination combined with wireless data transmission, sensing, actuation, powering and vision/illumination. They are small in size, low power, and have reconfigurable software libraries for the Hardware Abstraction Layer (HAL), which has been proven to work reliably for different types of MCRs. A design template for a generic SMAC application implementing a robust communication protocol is presented in this work, together with its finite state machine abstraction, capturing all the architectural components involved. The reliability of the wireless link is assessed for different levels of data transmission power and separation distances. The current consumption for each SMAC module is quantified and the timing of a SMAC radio message transmission is characterized. Finally, the applicability of SMAC in the field of MCRs is discussed by analysing examples from the literature

    A wireless platform for in vivo measurement of resistance properties of the gastrointestinal tract

    Get PDF
    Active locomotion of wireless capsule endoscopes has the potential to improve the diagnostic yield of this painless technique for the diagnosis of gastrointestinal tract disease. In order to design effective locomotion mechanisms, a quantitative measure of the propelling force required to effectively move a capsule inside the gastrointestinal tract is necessary. In this study, we introduce a novel wireless platform that is able to measure the force opposing capsule motion, without perturbing the physiologic conditions with physical connections to the outside of the gastrointestinal tract. The platform takes advantage of a wireless capsule that is magnetically coupled with an external permanent magnet. A secondary contribution of this manuscript is to present a real-time method to estimate the axial magnetic force acting on a wireless capsule manipulated by an external magnetic field. In addition to the intermagnetic force, the platform provides real-time measurements of the capsule position, velocity, and acceleration. The platform was assessed with benchtop trials within a workspace that extends 15 cm from each side of the external permanent magnet, showing average error in estimating the force and the position of less than 0.1 N and 10 mm, respectively. The platform was also able to estimate the dynamic behavior of a known resistant force with an error of 5.45%. Finally, an in vivo experiment on a porcine colon model validated the feasibility of measuring the resistant force in opposition to magnetic propulsion of a wireless capsule

    Trigger-disabling Acquisition System for Quantum Key Distribution failsafe against Self-blinding

    Full text link
    Modern single-photon detectors based on avalanche photodiodes offer increasingly higher triggering speeds, thus fostering their use in several fields, prominently in the recent area of Quantum Key Distribution. To reduce the probability of an afterpulse, these detectors are usually equipped with a circuitry that disables the trigger for a certain time after a positive detection event, known as dead time. If the acquisition system connected to the detector is not properly designed, efficiency issues arise when the triggering rate is faster than the inverse of detector's dead-time. Moreover, when this happens with two or more detectors used in coincidence, a security risk called "self-blinding" can jeopardize the distribution of a secret quantum key. In this paper we introduce a trigger-disabling circuitry based on an FPGA-driven feedback loop, so to avoid the above-mentioned inconveniences. In the regime of single-photon-attenuated light, the electronics dynamically accept a trigger only after detectors' complete recovery from dead-time. This technique proves useful to work with detectors at their maximum speed and to increase the security of a quantum key distribution setup.Comment: 5 pages, 3 figures. Version 2 corrected and improve
    • …
    corecore