24 research outputs found

    Atomic structure and segregation in alkali-metal heteroclusters

    Get PDF
    The ground-state atomic and electronic distributions in NamCsn clusters with composition m=n and m=2n have been calculated by minimizing the total cluster energy using the density-functional formalism. The approximation is made by replacing the total external potential of the ions by its spherical average around the cluster center during the iterative process of solving the Kohn-Sham equations for each geometry tested. In the size range studied here (up to 90 atoms per cluster), the cluster is composed of well-separated homoatomic Na and Cs shells, the external one always being a Cs shell. We have also found that the cohesive energy goes rapidly to the bulk limit. An analysis of the geometries shows strong cluster reconstruction with increasing size. By comparing the geometry of pure Nan with that of the Nan core in NanCsn for clusters formed by only an inner Na layer and an outer Cs layer, we have observed that the Nan core adopts a geometry different in most cases from that of the free Nan cluster, and such that the number of faces of the polyhedron formed by the Nan core is as close as possible to the number of external Cs atoms, in order to accomodate these Cs atoms on top of the faces of the polyhedron

    Direct pathway for sticking/desorption of H2 on Si(100)

    Get PDF
    The energetics of H2 interacting with the Si(100) surface is studied by means of ab initio total energy calculations within the framework of density functional theory. We find a direct desorption pathway from the mono-hydride phase which is compatible with experimental activation energies and demonstrate the importance of substrate relaxation for this process. Both the transition state configuration and barrier height depend crucially on the degree of buckling of the Si dimers on the Si(100) surface. The adsorption barrier height on the clean surface is governed by the buckling via its influence on the surface electronic structure. We discuss the consequences of this coupling for adsorption experiments and the relation between adsorption and desorption.

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
    corecore