496 research outputs found
Evidence for a Finite Temperature Insulator
In superconductors the zero-resistance current-flow is protected from
dissipation at finite temperatures (T) by virtue of the short-circuit condition
maintained by the electrons that remain in the condensed state. The recently
suggested finite-T insulator and the "superinsulating" phase are different
because any residual mechanism of conduction will eventually become dominant as
the finite-T insulator sets-in. If the residual conduction is small it may be
possible to observe the transition to these intriguing states. We show that the
conductivity of the high magnetic-field insulator terminating superconductivity
in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero
conductance at T<0.04 K. We discuss our results in the light of theories that
lead to a finite-T insulator
Jumps in current-voltage characteristics in disordered films
We argue that giant jumps of current at finite voltages observed in
disordered samples of InO, TiN and YSi manifest a bistability caused by the
overheating of electrons. One of the stable states is overheated and thus
low-resistive, while the other, high-resistive state is heated much less by the
same voltage. The bistability occurs provided that cooling of electrons is
inefficient and the temperature dependence of the equilibrium resistance, R(T),
is steep enough. We use experimental R(T) and assume phonon mechanism of the
cooling taking into account its strong suppression by disorder. Our description
of details of the I-V characteristics does not involve adjustable parameters
and turns out to be in a quantitative agreement with the experiments. We
propose experiments for more direct checks of this physical picture.Comment: Final version, as published; 4 pages, 3 figure
Metastatic Carcinoma Occurring in a Gastric Hyperplastic Polyp Mimicking Primary Gastric Cancer: The First Reported Case
Hyperplastic polyps of the stomach are regarded as benign. However, in rare cases they may contain incipient primary carcinomas. To our knowledge, breast carcinoma metastatic to a gastric hyperplastic polyp has not yet been reported. We describe the case of a 69-year-old woman to whom a gastric polyp was endoscopically excised. The patient had previously undergone a right mastectomy for mixed, invasive ductal and lobular carcinoma 5 years earlier. Histological sections from the gastric lesion showed typical features of hyperplastic polyp with foci of poorly differentiated adenocarcinoma including signet ring cells infiltrating the lamina propria. The histologic findings were consistent with a primary gastric cancer. However, the carcinoma cells were immunopositive for estrogen and progesterone receptors and GATA3 and negative for CDX2, Hep Par 1, and MUC5AC. E-cadherin showed membranous reactivity in some of the carcinoma cells while in others it was negative. Accordingly, metastatic mixed, lobular and ductal breast carcinoma was diagnosed. We conclude that metastatic adenocarcinoma mimicking primary gastric cancer can be rarely encountered in hyperplastic gastric polyps
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Complex spine deformities in young patients with severe osteogenesis imperfecta: current concepts review
The severity of osteogenesis imperfecta (OI), the associated reduced quality and quantity of collagen type I, the degree of bone fragility, ligamentous laxity, vertebral fractures and multilevel vertebral deformities all impair the mechanical integrity of the whole spinal architecture and relate to the high prevalence of progressive kyphoscoliotic deformities during growth. Bisphosphonate therapy may at best slow down curve progression but does not seem to lower the prevalence of deformities or the incidence of surgery. Brace treatment is problematic due to pre-existing chest wall deformities, stiffness of the curve and the brittleness of the ribs which limit transfer of corrective forces from the brace shell to the spine. Progressive curves entail loss of balance, chest deformities, pain and compromise of pulmonary function and eventually require surgical stabilization, usually around puberty. Severe vertebral deformities including deformed, small pedicles, highly brittle bones and chest deformities, short deformed trunks and associated issues like C-spine and cranial base abnormalities (basilar impressions, cervical kyphosis) as well as deformed lower and upper extremities are posing multiple peri-and intraoperative challenges. Hence, an early multidisciplinary approach (anaesthetist, pulmonologist, paediatric orthopaedic spine surgeon) is mandatory.This paper was written under the guidance of the Spine Study Group of the European Paediatric Orthopaedic Society. It highlights the most pertinent information given in the current literature and various practical aspects on surgical care of spine deformities in young OI patients based on the personal experience of the contributing authors
A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting‐state fMRI
Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood-oxygen-level-dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting-state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow-up scans the next day. Our analysis revealed "Hypoperfusion spatially-Independent Components" (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user-independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion
COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts
© 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological,
medical and public health issues to minimize its impact. In this rapidly evolving context,
scholars, professionals and the public may need to quickly identify important new studies. In
response, this paper assesses the coverage of scholarly databases and impact indicators
during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly
accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed.
Google Scholar’s results included many false matches. A few COVID-19 papers from the
21,395 in Dimensions were already highly cited, with substantial news and social media
attention. For this topic, in contrast to previous studies, there seems to be a high degree of
convergence between articles shared in the social web and citation counts, at least in the
short term. In particular, articles that are extensively tweeted on the day first indexed are
likely to be highly read and relatively highly cited three weeks later. Researchers needing wide
scope literature searches (rather than health focused PubMed or medRxiv searches) should
start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as
indicators of likely importance
- …