64 research outputs found

    Niche variation and the maintenance of variation in body size in a burying beetle

    Get PDF
    © 2015 The Authors. Ecological Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Online Version of Record published before inclusion in an issue.The final published version is available via DOI: 10.1111/een.122751. In burying beetles (Nicrophorinae) body size is known to provide both a fecundity advantage (in females) and successful resource defence (in males and females). Despite this, considerable variation in body sizes is observed in natural populations. 2. A possible explanation for the maintenance of this variation, even with intra- and interspecific resource competition, is that individuals might assort according to body size on different sized breeding-resources. 3. We tested the prediction that ‘bigger is always better’ in the wild, and in the laboratory, by experimentally manipulating combinations of available breeding-resource size (mouse carcasses) and competitor’s body size in Nicrophorus vespilloides (Herbst 1783). 4. In the field, large female beetles deserted small carcasses, without breeding, more often than they did larger carcasses, but small females used carcasses indiscriminately with respect to size. In the laboratory large beetles reared larger broods (with more offspring) on larger carcasses than small beetles, but on small carcasses small beetles had a reproductive advantage over large ones. Offspring size covaried with carcass size independently of parental body size. 5. Our combined results suggest breeding resource value depends on an individual’s body size, and variation in body size is environmentally induced: maintained by differences in available carcass sizes. This produces a mechanism by which individual specialisation leads to an increase in niche variation via body size in these beetles.This work was supported by a PhD studentship from the Natural Environment Research Council (NE/1528326/1) and a grant from NERC to N.J.R. and A.J.M. (NE/1025468/1)

    Increased allocation to reproduction reduces future competitive ability in a burying beetle

    Get PDF
    1. The existence of a trade-off between current and future reproduction is a fundamental prediction of life-history theory. Support for this prediction comes from brood size manipulations, showing that caring for enlarged broods often reduces the parent's future survival or fecundity. However, in many species, individuals must invest in competing for the resources required for future reproduction. Thus, a neglected aspect of this trade-off is that increased allocation to current reproduction may reduce an individual's future competitive ability. 2. We tested this prediction in the burying beetle, Nicrophorus vespilloides, a species where parents care for their offspring and where there is fierce competition for resources used for breeding. 3. We manipulated reproductive effort by providing females with either a small brood of 10 larvae or a large brood of 40 larvae and compared the ability of these females, and virgin females that had no prior access to a carcass, to compete for a second carcass against a virgin competitor. 4. We found that increased allocation to current reproduction reduced future competitive ability, as females that had cared for a small brood were more successful when competing for a second carcass against a virgin competitor than females that had cared for a large brood. In addition, the costs of reproduction were offset by the benefits of feeding from the carcass during an initial breeding attempt, as females that had cared for a small brood were better competitors than virgin females that had no prior access to a carcass, whilst females that had cared for a large brood were similar in competitive ability to virgin females. 5. Our results add to our understanding of the trade-off between current and future reproduction by showing that this trade-off can manifest through differences in future competitive ability and that direct benefits of reproduction can offset some of these costs. 16-Apr-2020Read me for "Data from RichardsonStephensSmiseth_JournalofAnimalEcology.csv" This data file consists of a comma separated values spreadsheet (.csv), which provides data for the effects of allocation to reproduction via brood size manipulation on future competitive ability in contests for a carcass. Each line in the spreadsheet represents an individual, experimental female. female_id – individual ID of the female. eclosion – date of eclosion. death – date of death. lifespan – number of days lived from eclosion to death. treatment_code – experimental treatment (control = no breeding attempt, ten = brood of ten larvae, forty = brood of forty larvae). won – outcome of the contest (Y = female won, N = female lost, NA = unclear). outcome_clear – was the outcome of the contest clear? (Y = yes, N = no). size – size of the female, measured as pronotum width (mm). competitor_size – size of the virgin female competitor measured as pronotum width (mm). size_difference – absolute difference in size between focal female and her competitor (mm). brood_size – number of larvae in the experimental brood at dispersal. dot – number and placement of identifying marks (1 or 2 = number of dots, L or R = left or right elytra). female_pre_mass – female mass prior to initial reproductive attempt (g). female_post_mass – female mass after initial reproductive attempt (g). female_mass_change – female mass change during initial reproductive attempt (g). brood_mass_pre – mass of the brood of larvae when cross fostered and given to the female (g). brood_mass_post – mass of the brood of larvae at dispersal from the carcass (g). breeding_carcass_mass – mass of the mouse carcass used for breeding (g). competition_carcass_mass – mass of the mouse carcass females competed for (g). Funding provided by: Natural Environment Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000270Award Number: NE/L002558/

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Winning Fights Induces Hyperaggression via the Action of the Biogenic Amine Octopamine in Crickets

    Get PDF
    Winning an agonistic interaction against a conspecific is known to heighten aggressiveness, but the underlying events and mechanism are poorly understood. We quantified the effect of experiencing successive wins on aggression in adult male crickets (Gryllus bimaculatus) by staging knockout tournaments and investigated its dependence on biogenic amines by treatment with amine receptor antagonists. For an inter-fight interval of 5 min, fights between winners escalated to higher levels of aggression and lasted significantly longer than the preceding round. This winner effect is transient, and no longer evident for an inter-fight interval of 20 min, indicating that it does not result from selecting individuals that were hyper-aggressive from the outset. A winner effect was also evident in crickets that experienced wins without physical exertion, or that engaged in fights that were interrupted before a win was experienced. Finally, the winner effect was abolished by prior treatment with epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, nor by yohimbine, an insect tyramine receptor blocker nor by fluphenazine an insect dopamine-receptor blocker. Taken together our study in the cricket indicates that the physical exertion of fighting, together with some rewarding aspect of the actual winning experience, leads to a transient increase in aggressive motivation via activation of the octopaminergic system, the invertebrate equivalent to the adrenergic system of vertebrates

    A cost of cryptic female choice in the yellow dung fly

    Full text link
    Female dung flies Scathophaga stercoraria (L.) store sperm from several males in three or four spermathecae. Selection on the number of spermathecae was successful and the morphological intermediate stages in the evolution from three to four spermathecae are illustrated. The genetic quality of a male from a female’s perspective depends on an interaction between their genotypes and the microhabitat in which the offspring will grow. Females influence the paternity pattern of their offspring, and do this differently in different microhabitats. Females with four spermathecae are better able to influence paternity than are those with three spermathecae. However, there must be a cost to building and maintaining an extra spermatheca. We estimate, using the animal model on pedigree data, that this cost is approximately five eggs per clutch, i.e. around 8% of the mean clutch size. This is a substantial cost and such costs should not be ignored in discussions of the benefits to females of assessing the genetic qualities of their mating partners. We suggest that the number of spermathecae in the study population is stable because the relative benefits in quality of offspring through cryptic female choice is balanced by the costs in total numbers of offspring

    Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode <it>Caenorhabditis elegans</it>, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success.</p> <p>Results</p> <p>We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners.</p> <p>Conclusions</p> <p>We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that <it>C. elegans </it>harbors substantial heritable variation for traits contributing to male reproductive success. <it>C. elegans </it>provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.</p

    Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera)

    Full text link
    Males of Hoplothrips karnyi (Hood) (Insecta: Thysanoptera), a colonial fungus-feeding thrips, fight each other in defense of communal egg mass sites, where they mate with females that come to oviposit. Fighting males stab each other with their enlarged, armed forelegs and hit each other with their abdomens. Escalated fights occur between large males of similar size. Fights are often lethal; males that died during observations fought more frequently than other males, were stabbed more often and more severely than other males, and were relatively large, but somewhat smaller than their opponents. Large males tend to win fights and guard egg masses, and they secure about 80% of last matings before ovipositions. Guarding males apparently assess female reproductive condition by putting their forelegs partially around females' abdomens; guarding males, but not nonguarding males, mate preferentially with females that have yet to oviposit. Non-guarding males mate with females away from egg masses, sneak matings at egg masses, and occasionally challenge guarding males. Challenges tend to follow matings by non-guarding males at egg masses. Each of four observed or inferred takeovers was followed by the death of the guarding male that lost. Male fighting strategies are discussed in terms of the consistency of lethal fighting with game theory models. Guardin males appear to pursue a classical “hawk” strategy of “escalate until injured or victorious”. This strategy may be advantageous because only large males become guarders, the mating success of guarders greatly exceeds that of non-guarders, and high population viscosity ensures that benefits from killing an opponent accrue directly to gaurders. The occurrence of challenges by large non-guarders implies that fighting ability and resource value asymmetries between males change over time; such changes may result from the energetic costs of guarding, injury to guarding males, or depletion of guarding males' supply of sperm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46885/1/265_2004_Article_BF00299845.pd
    corecore