143 research outputs found

    Plastic Indians, Nazis, and Genocide: A Perspective on America\u27s Treatment of Indian Nations

    Get PDF

    Landau parameters of nuclear matter in the spin and spin-isospin channels

    Get PDF
    The equation of state of spin and isospin polarized nuclear matter is determined in the framework of the Brueckner theory including three-body forces. The Landau parameters in the spin and spin-isospin sectors are derived as a function of the baryonic density. The results are compared with the Gamow-Teller collective modes. The relevance of G0G_0 and G0G_0' for neutron stars is shortly discussed, including the magnetic susceptibility and the neutron star cooling.Comment: 2 pages, 2 figures, RevTex4 forma

    Do Hadronic Charge Exchange Reactions Measure Electroweak L = 1 Strength?

    Get PDF
    An eikonal model has been used to assess the relationship between calculated strengths for first forbidden beta decay and calculated cross sections for (p,n) charge exchange reactions. It is found that these are proportional for strong transitions, suggesting that hadronic charge exchange reactions may be useful in determining the spin-dipole matrix elements for astrophysically interesting leptonic transitions.Comment: 14 pages, 5 figures, Submitted to Physical Review

    Missing and Quenched Gamow Teller Strength

    Full text link
    Gamow-Teller strength functions in full (pf)8(pf)^{8} spaces are calculated with sufficient accuracy to ensure that all the states in the resonance region have been populated. Many of the resulting peaks are weak enough to become unobservable. The quenching factor necessary to bring into agreement the low lying observed states with shell model predictions is shown to be due to nuclear correlations. To within experimental uncertainties it is the same that is found in one particle transfer and (e,e') reactions. Perfect consistency between the observed 48Ca(p,n)48Sc^{48}Ca(p,n)^{48}Sc peaks and the calculation is achieved by assuming an observation threshold of 0.75\% of the total strength, a value that seems typical in several experimentsComment: 11 pages, 6 figures avalaible upon request, RevTeX, FTUAM-94/0

    Splitting of the Dipole and Spin-Dipole Resonances

    Full text link
    Cross sections for the 90,92,94Zr(p,n) reactions were measured at energies of 79.2 and 119.4 MeV. A phenomenological model was developed to describe the variation with bombarding energy of the position of the L=1 peak observed in these and other (p,n) reactions. The model yields the splitting between the giant dipole and giant spin dipole resonances. Values of these splittings are obtained for isotopes of Zr and Sn and for 208Pb.Comment: 14 pages, 4 figure

    On the Strength of Spin-Isospin Transitions in A=28 Nuclei

    Full text link
    The relations between the strengths of spin-isospin transition operators extracted from direct nuclear reactions, magnetic scattering of electrons and processes of semi-leptonic weak interactions are discussed.Comment: LaTeX, 8 pages, 1Postscript with figur

    Projectile Δ\Delta and target-Roper excitation in the p (d, d')X reaction

    Full text link
    In this paper we compare a model that contains the mechanisms of Δ\Delta excitation in the projectile and Roper excitation in the target with experimental data from two (d, d') experiments on a proton target. The agreement of the theory with the experiment is fair for the data taken at T_d = 2.3 GeV. The Δ\Delta excitation in the projectile is predicted close to the observed energy with the correct width. The theory, however, underpredicts by about 40% the cross sections measured at T_d = 1.6 GeV at angles where the cross section has fallen by about two orders of magnitude. The analysis done here allows to extract an approximate strength for the excitation of the Roper [N^*(1440)] excitation and a qualitative agreement with the theoretical predictions is also found.Comment: 8 ps figure

    Gamow-Teller strength in 54Fe and 56Fe

    Full text link
    Through a sequence of large scale shell model calculations, total Gamow-Teller strengths (S+S_+ and SS_-) in 54^{54}Fe and 56^{56}Fe are obtained. They reproduce the experimental values once the στ\sigma\tau operator is quenched by the standard factor of 0.770.77. Comparisons are made with recent Shell Model Monte Carlo calculations. Results are shown to depend critically on the interaction. From an analysis of the GT+ and GT- strength functions it is concluded that experimental evidence is consistent with the 3(NZ)3(N-Z) sum rule.Comment: 6 pages, RevTeX 3.0 using psfig, 7 Postscript figures included using uufile

    What about a beta-beam facility for low energy neutrinos?

    Full text link
    A novel method to produce neutrino beams has recently been proposed : the beta-beams. This method consists in using the beta-decay of boosted radioactive nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose to exploit the beta-beam concept to produce neutrino beams of low energy. We discuss the applications of such a facility as well as its importance for different domains of physics. We focus, in particular, on neutrino-nucleus interaction studies of interest for various open issues in astrophysics, nuclear and particle physics. We suggest possible sites for a low energy beta-beam facility.Comment: 4 pages, 1 figur

    Inclusion of virtual nuclear excitations in the formulation of the (e,e'N)

    Get PDF
    A wave-function framework for the theory of the (e,e'N) reaction is presented in order to justify the use of coupled channel equations in the usual Feynman matrix element. The overall wave function containing the electron and nucleon coordinates is expanded in a basis set of eigenstates of the nuclear Hamiltonian, which contain both bound states as well as continuum states.. The latter have an ingoing nucleon with a variable momentum Q incident on the daughter nucleus as a target, with as many outgoing channels as desirable. The Dirac Eqs. for the electron part of the wave function acquire inhomogeneous terms, and require the use of distorted electron Green's functions for their solutions. The condition that the asymptotic wave function contain only the appropriate momentum Q_k for the outgoing nucleon, which corresponds to the electron momentum k through energy conservation, is achieved through the use of the steepest descent saddle point method, commonly used in three-body calculations.Comment: 30 page
    corecore