68 research outputs found

    Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7

    Full text link
    The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.

    Thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane anisotropies

    Full text link
    The thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane anisotropies are investigated via the integrable su(3) model in terms of the quantum transfer matrix method and the recently developed high temperature expansion method for exactly solved models. It is shown that large single-ion anisotropy may result in a singlet gapped phase in the spin-1 chain which is significantly different from the standard Haldane phase. A large in-plane anisotropy may destroy the gapped phase. On the other hand, in the vicinity of the critical point a weak in-plane anisotropy leads to a different phase transition than the Pokrovsky-Talapov transition. The magnetic susceptibility, specific heat and magnetization evaluated from the free energy are in excellent agreement with the experimental data for the compounds NiC_2H_8N_2)_2Ni(CN)_4 and Ni(C_{10}H_8N_2)_2Ni(CN)_4.H_2O.Comment: 18 pages, 6 figures, to appear in PR

    Electron spin resonance in high-field critical phase of gapped spin chains

    Full text link
    Motivated by recent experiments on Ni(C_{2}H_{8}N_{2})_{2}Ni(CN)_{4} (commonly known as NENC), we study the electron spin resonance in the critical high-field phase of the antiferromagnetic S=1 chain with strong planar anisotropy and show that the ESR spectra exhibit several peculiarities in the critical phase. Possible relevance of those results for other gapped spin systems is discussed.Comment: 8 revtex pages, 1 eps figure include

    Specific heat study of magnetic excitations in a one-dimensional S =1 Heisenberg magnet with strong planar anisotropy

    No full text
    The results of experimental studies of the specific heat of the magnetic chain compounds Ni(C₂H₈N₂)₂Ni(CN)₄, Ni(C₁₁H₁₀N₂O)₂Ni(CN)₄, and Ni(C₁₀H₈N₂)₂Ni(CN)₄⋅H₂O are reported. All compounds are identified as S=1 planar Heisenberg magnetic chains with large planar anisotropy and different values of the in-plane anisotropy constant. The low-temperature specific heat data are interpreted assuming the existence of noninteracting excitons and antiexcitons as elementary excitations from the singlet-ground state. The extended strong-coupling model is used for analysis of the data at higher temperatures. The applicability of the models used with respect to the value of the in-plane anisotropy is discussed

    A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source

    Get PDF
    Lithium-iron methasilicate (LiFeSi2_{2}O6_{6}, LFS), a member of clinopyroxene family, is an attractive compound for its multiferroic properties and applicability in energy-related devices. Conventional preparative method requires heating at elevated temperatures for long periods of time, with inevitable severe grain growth. We demonstrate that α-FeO(OH) (goethite) is superior as an iron source toward phase pure LFS over conventional hematite, α-Fe2_{2}O3_{3}. The exact phase purity, i.e., no trace of iron containing reactant, is confirmed in the goethite-derived LFS by 57Fe Mössbauer spectroscopy. The grain growth of LFS during heating is suppressed to keep its crystallite size of 120 nm. Higher reactivity of goethite in comparison with hematite is mainly attributed to the dehydration of goethite, which in our case was accelerated by Li2_{2}O. Related reaction mechanisms with the possible product pre-nucleation during mechanical activation are also mentioned. The magnetic properties of goethite-derived LFS are equivalent to those prepared via a laborious solid-state route. Thus, the presented preparative method offers a more sustainable route than conventional processing, and thus enables practical application of LFS

    Field-induced structural evolution in the spin-Peierls compound CuGeO3_3: high-field ESR study

    Get PDF
    The dimerized-incommensurate phase transition in the spin-Peierls compound CuGeO3_3 is probed using multifrequency high-resolution electron spin resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced development of the soliton-like incommensurate superstructure is clearly indicated as a pronounced increase of the ESR linewidth ΔB\Delta B (magnon excitations), with a ΔBmax\Delta B_{max} at BcB_{c}\sim 13.8 T. The anomaly is explained in terms of the magnon-soliton scattering, and suggests that the soliton-like phase exists close to the boundary of the dimerized-incommensurate phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped CuGeO3_3 are studied. Suppression of the ΔB\Delta B anomaly observed in the doped samples suggests a collapse of the long-range-ordered soliton states upon doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.

    Spin Dynamics at Very Low Temperature in Spin Ice Dy2_2Ti2_2O7_7

    Full text link
    We have performed AC susceptibility and DC magnetic relaxation measurements on the spin ice system Dy2_2Ti2_2O7_7 down to 0.08 K. The relaxation time of the magnetization has been estimated below 2 K down to 0.08 K. The spin dynamics of Dy2_2Ti2_2O7_7 is well described by using two relaxation times (τS\tau_{\rm S} (short time) and τL\tau_{\rm L} (long time)). Both τS\tau_{\rm S} and τL\tau_{\rm L} increase on cooling. Assuming the Arrhenius law in the temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K, both τS\tau_{\rm S} and τL\tau_{\rm L} show a clear deviation from the thermal activated dynamics toward temperature independent relaxation, suggesting a quantum dynamics.Comment: 4 page
    corecore