2,068 research outputs found

    Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars

    Get PDF
    © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We have investigated a highly energetic H-ingestion event during shell He burning leading to H-burning luminosities of log (L H /L ⊙ ) ~ 13 in a 45M⊙ Pop III massive stellar model. In order to track the nucleosynthesis which may occur in such an event, we run a series of single-zone nucleosynthesis models for typical conditions found in the stellar evolution model. Such nucleosynthesis conditions may lead to i-process neutron densities of up to ~10 13 cm -3 . The resulting simulation abundance pattern, where Mg comes from He burning and Ca from the i process, agrees with the general observed pattern of the most iron-poor star currently known, SMSS J031300.36-670839.3. However, Na is also efficiently produced in these i-process conditions, and the prediction exceeds observations by ~2.5 dex. While this probably rules out this model for SMSS J031300.36-670839.3, the typical i-process signature of combined He burning and i process of higher than solar [Na/Mg] , [Mg/Al], and low [Ca/Mg] is reproducing abundance features of the two next most iron-poor stars HE 1017-5240 and HE 1327-2326 very well. The i process does not reach Fe which would have to come from a low level of additional enrichment. i process in hyper-metal-poor or Pop III massive stars may be able to explain certain abundance patterns observed in some of the most metal-poor CEMP-no stars

    M-Branes on k-center Instantons

    Full text link
    We present analytic solutions for membrane metric function based on transverse kk-center instanton geometries. The membrane metric functions depend on more than two transverse coordinates and the solutions provide realizations of fully localized type IIA D2/D6 and NS5/D6 brane intersections. All solutions have partial preserved supersymmetries.Comment: 22 pages, 5 figure

    Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages

    Get PDF
    A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz

    The application of reliability methods in the design of stiffened FRP composite panels for marine vessels

    Get PDF
    The use of composite laminate materials has increased rapidly in recent years due to their excellent strength to weight ratio and resistance to corrosion. In the construction of marine vessels, stiffened plates are the most commonly used structural elements, forming the deck, bottom hull, side shells and bulkheads. This paper presents the use of a stochastic approach to the design of stiffened marine composite panels as part of a current research programme into developing stochastic methods for composite ship structures, accounting for variations in material properties, geometric indices and processing techniques, from the component level to the full system level. An analytical model for the solution of a stiffened isotropic plate using a grillage analogy is extended by the use of equivalent elastic properties for composite modelling. This methodology is applied in a reliability analysis of an isotropic (steel) stiffened plate before the final application for a reliability analysis for a FRP composite stiffened plate

    Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band

    Get PDF
    A wavelength-swept thulium-doped silica fiber laser using an intracavity rotating slotted-disk wavelength scanning filter in combination with an intracavity solid etalon for passive control of temporal and spectral profiles is reported. The laser yielded a wavelength swept output in a step-wise fashion with each laser pulse separated from the previous pulse by a frequency interval equal to the free-spectral-range of the etalon and with an instantaneous linewidth of <0.05 nm. Scanning ranges from 1905 nm to 2049 nm for a cladding-pumping laser configuration, and from 1768 nm to 1956 nm for a core-pumping laser configuration were achieved at average output powers up to ~1 W

    Double scaling limits of random matrices and minimal (2m,1) models: the merging of two cuts in a degenerate case

    Get PDF
    In this article, we show that the double scaling limit correlation functions of a random matrix model when two cuts merge with degeneracy 2m2m (i.e. when yx2my\sim x^{2m} for arbitrary values of the integer mm) are the same as the determinantal formulae defined by conformal (2m,1)(2m,1) models. Our approach follows the one developed by Berg\`{e}re and Eynard in \cite{BergereEynard} and uses a Lax pair representation of the conformal (2m,1)(2m,1) models (giving Painlev\'e II integrable hierarchy) as suggested by Bleher and Eynard in \cite{BleherEynard}. In particular we define Baker-Akhiezer functions associated to the Lax pair to construct a kernel which is then used to compute determinantal formulae giving the correlation functions of the double scaling limit of a matrix model near the merging of two cuts.Comment: 37 pages, 4 figures. Presentation improved, typos corrected. Published in Journal Of Statistical Mechanic

    Pericyte NF-κB Activation Enhances Endothelial Cell Proliferation and Proangiogenic Cytokine Secretion in Vitro

    Get PDF
    Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell–cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold,P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease

    The Hamiltonian Structure of the Second Painleve Hierarchy

    Full text link
    In this paper we study the Hamiltonian structure of the second Painleve hierarchy, an infinite sequence of nonlinear ordinary differential equations containing PII as its simplest equation. The n-th element of the hierarchy is a non linear ODE of order 2n in the independent variable zz depending on n parameters denoted by t1,...,tn1{t}_1,...,{t}_{n-1} and αn\alpha_n. We introduce new canonical coordinates and obtain Hamiltonians for the zz and t1,...,tn1t_1,...,t_{n-1} evolutions. We give explicit formulae for these Hamiltonians showing that they are polynomials in our canonical coordinates

    Supersymmetric version of a Gaussian irrotational compressible fluid flow

    Full text link
    The Lie point symmetries and corresponding invariant solutions are obtained for a Gaussian, irrotational, compressible fluid flow. A supersymmetric extension of this model is then formulated through the use of a superspace and superfield formalism. The Lie superalgebra of this extended model is determined and a classification of its subalgebras is performed. The method of symmetry reduction is systematically applied in order to derive special classes of invariant solutions of the supersymmetric model. Several new types of algebraic, hyperbolic, multi-solitonic and doubly periodic solutions are obtained in explicit form.Comment: Expanded introduction and added new section on classical Gaussian fluid flow. Included several additional reference

    Bridging the Digital Divide in Design and Mathematics through an Immersive Maker Program for Underrepresented Students

    Get PDF
    Maker spaces engage students in learning by empowering them to explore ideas and problem-solving in a hands-on environment using digital and/or physical modalities. Design-based programs like this can increase learning by fostering student autonomy and promoting problem-solving and sensemaking. Our interdisciplinary team of researchers at this Midwest university, in conjunction with community partners, offered a program targeted at underrepresented and minority students in a school zone with an exceptionally high educational achievement gap, one of the worst in the nation. Our state ranks 48th and 50th in the high school graduation rates for African American and Hispanic students, respectively. Our work focused on design and mathematics learning and on using maker spaces to bridge the digital divide to create opportunities for underrepresented students. This chapter describes how we developed a culturally responsive pedagogy for underrepresented K-12 students to learn about design and mathematics. We share some short-term outcomes of providing equal access to immersive curricula to underrepresented students, and describe how we bridged learning losses due to the impact of the COVID-19 pandemic
    corecore