1,087 research outputs found
Diamonds in HD 97048
We present adaptive optics high angular resolution (\sim0\farcs1)
spectroscopic observations in the 3 m region of the Herbig Ae/Be star HD
97048. For the first time, we spatially resolve the emission in the diamond
features at 3.43 and 3.53 m and in the adjacent continuum. Using both the
intensity profiles along the slit and reconstructed two-dimensional images of
the object, we derive full-width at half-maximum sizes consistent with the
predictions for a circumstellar disk seen pole-on. The diamond emission
originates in the inner region ( AU) of the disk.Comment: ApJLetter, in pres
X-Shooter study of accretion in -Ophiucus: very low-mass stars and brown dwarfs
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17
candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived
SpT and Av for all the targets, and then we determined their physical
parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or
close to the hydrogen-burning limit. Using the intensity of various emission
lines present in their spectra, we determined the Lacc and Macc for all the
objects. When compared with previous works targeting the same sample, we find
that, in general, these objects are not as strongly accreting as previously
reported, and we suggest that the reason is our more accurate estimate of the
photospheric parameters. We also compare our findings with recent works in
other slightly older star-forming regions to investigate possible differences
in the accretion properties, but we find that the accretion properties for our
targets have the same dependence on the stellar and substellar parameters as in
the other regions. This leads us to conclude that we do not find evidence for a
different dependence of Macc with M* when comparing low-mass stars and BDs.
Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in
some of our recent works in other star-forming regions, and no significant
differences in Macc due to different ages or properties of the regions. The
latter result suffers, however, from low statistics and sample selection biases
in the current studies. The small scatter in the Macc-M* correlation confirms
that Macc in the literature based on uncertain photospheric parameters and
single accretion indicators, such as the Ha width, can lead to a scatter that
is unphysically large. Our studies show that only broadband spectroscopic
surveys coupled with a detailed analysis of the photospheric and accretion
properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract
shortened to fit arXiv constraint
Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics
We investigate the structure and kinematics of the circumstellar disk around the Herbig Ae star MWC 758 using high-resolution observations of the ^(12)CO (3-2) and dust continuum emission at the wavelengths of 0.87 and 3.3 mm. We find that the dust emission peaks at an orbital radius of about 100 AU, while the CO intensity has a central peak coincident with the position of the star. The CO emission is in agreement with a disk in Keplerian rotation around a 2.0 M_ā star, confirming that MWC 758 is indeed an intermediate-mass star. By comparing the observation with theoretical disk models, we derive that the disk surface density Ī£(r) steeply increases from 40 to 100 AU and decreases exponentially outward. Within 40 AU, the disk has to be optically thin in the continuum emission at millimeter wavelengths to explain the observed dust morphology, though our observations lack the angular resolution and sensitivity required to constrain the surface density on these spatial scales. The surface density distribution in MWC 758 disk is similar to that of "transition" disks, though no disk clearing has been previously inferred from the analysis of the spectral energy distribution (SED). Moreover, the asymmetries observed in the dust and CO emission suggest that the disk may be gravitationally perturbed by a low-mass companion orbiting within a radius of 30 AU. Our results emphasize that SEDs alone do not provide a complete picture of disk structure and that high-resolution millimeter-wave images are essential to reveal the structure of the cool disk mid-plane
X-Shooter spectroscopy of FU Tau A
We have analyzed a broad-band optical and near-infrared spectrum of FU Tau A,
a presumed young brown dwarf in the Taurus star forming region that has
intrigued both theorists and observers by its over-luminosity in the HR diagram
with respect to standard pre-main sequence evolutionary models. The new data,
obtained with the X-Shooter spectrograph at the Very Large Telescope, include
an unprecedented wealth of information on stellar parameters and simultaneously
observed accretion and outflow indicators for FU Tau A. We present the first
measurements of gravity (log g = 3.5 +- 0.5), radial velocity (RV = 22.5 +- 2.9
km/s), rotational velocity (v sin(i) = 20 +- 5 km/s) and lithium equivalent
width (W_Li = 430 +- 20 mAA) for FUTau A. From the rotational velocity and the
published period we infer a disk inclination of i ~ 50^deg. The lithium content
is much lower than theoretically expected for such a young very low mass
object, adding another puzzling feature to this object's properties. We
determine the mass accretion rate of FU Tau A from comparison of the
luminosities of 24 emission lines to empirical calibrations from the literature
and find a mean of log (dM/dt)_acc [M_sun/yr] = -9.9 +- 0.2. The accretion rate
determined independently from modeling of the excess emission in the Balmer and
Paschen continua is consistent with this value. The corresponding accretion
luminosity is too small to make a significant contribution to the bolometric
luminosity. The existence of an outflow in FU Tau A is demonstrated through the
first detection of forbidden emission lines from which we obtain an estimate
for the mass loss rate, log (dM/dt)_out [M_sun/yr] < -10.4. The mass outflow
and inflow rates can be combined to yield (dM/dt)_out / (dM/dt)_acc ~ 0.3, a
value that is in agreement with jet launching models.Comment: 12 pages, accepted for publication in A&
An extensive VLT/X-Shooter library of photospheric templates of pre-main sequence stars
Studies of the formation and evolution of young stars and their disks rely on
the knowledge of the stellar parameters of the young stars. The derivation of
these parameters is commonly based on comparison with photospheric template
spectra. Furthermore, chromospheric emission in young active stars impacts the
measurement of mass accretion rates, a key quantity to study disk evolution.
Here we derive stellar properties of low-mass pre-main sequence stars without
disks, which represent ideal photospheric templates for studies of young stars.
We also use these spectra to constrain the impact of chromospheric emission on
the measurements of mass accretion rates. The spectra in reduced,
flux-calibrated, and corrected for telluric absorption form are made available
to the community. We derive the spectral type for our targets by analyzing the
photospheric molecular features present in their VLT/X-Shooter spectra by means
of spectral indices and comparison of the relative strength of photospheric
absorption features. We also measure effective temperature, gravity, projected
rotational velocity, and radial velocity from our spectra by fitting them with
synthetic spectra with the ROTFIT tool. The targets have negligible extinction
and spectral type from G5 to M8. We perform synthetic photometry on the spectra
to derive the typical colors of young stars in different filters. We measure
the luminosity of the emission lines present in the spectra and estimate the
noise due to chromospheric emission in the measurements of accretion luminosity
in accreting stars. We provide a calibration of the photospheric colors of
young PMS stars as a function of their spectral type in a set of standard
broad-band optical and near-infrared filters. For stars with masses of ~
1.5Msun and ages of ~1-5 Myr, the chromospheric noise converts to a limit of
measurable mass accretion rates of ~ 3x10^-10 Msun/yr.Comment: Accepted for publication on Astronomy & Astrophysics. The spectra of
the photospheric templates will be uploaded to Vizier, but are already
available on request. Abstract shortened for arxiv constraints. Language
edited versio
3d modelling between ideation, geometry, and surveyed architecture: the case of the vaulted system of āAppartamento di Mezzanotteā in Palazzo Carignano
The present work focuses on the study of vaulted systems by Guarini, by virtue of the paradigmatic role that Guarini assumes in the field of studies dedicated to this topic. The research has been compared in-depth analysis aimed at connecting relevant data with archival drawings, historical studies and treatises in order to use digital representation in heuristic terms. The attempt is to delineate and explain, through the analysis of architectural artifacts, the links between theorizations, transformations of reference geometric models and buildings. The āAppartamento di Mezzanotteā (northern apartment) of Palazzo Carignano was choosen as a case study, because the different vaulted rooms that compose it witness the creative inspiration by Guarini and allow to structure a study that produce interesting results in relation to the connections between theoretical studies, research and cultural heritage. The use of digital representation integrated with photo-modelling (SfM) tries to create new tools to investigate these different fields in their absolute and relationship value
On the gas content of transitional disks: a VLT/X-Shooter study of accretion and winds
Transitional disks (TDs) are thought to be a late evolutionary stage of
protoplanetary disks with dust depleted inner regions. The mechanism
responsible for this depletion is still under debate. To constrain the models
it is mandatory to have a good understanding of the properties of the gas
content of the inner disk. Using X-Shooter broad band -UV to NIR- medium
resolution spectroscopy we derive the stellar, accretion, and wind properties
of a sample of 22 TDs. The analysis of these properties allows us to put strong
constraints on the gas content in a region very close to the star (<0.2 AU)
which is not accessible with any other observational technique. We fit the
spectra with a self-consistent procedure to derive simultaneously SpT,Av,and
mass accretion rates (Macc) of the targets. From forbidden emission lines we
derive the wind properties of the targets. Comparing our findings to values for
cTTs, we find that Macc and wind properties of 80% of the TDs in our sample,
which is strongly biased towards strongly accreting objects, are comparable to
those of cTTs. Thus, there are (at least) some TDs with Macc compatible with
those of cTTs, irrespective of the size of the dust inner hole.Only in 2 cases
Macc are much lower, while the wind properties are similar. We do not see any
strong trend of Macc with the size of the dust depleted cavity, nor with the
presence of a dusty optically thick disk close to the star. In the TDs in our
sample there is a gas rich inner disk with density similar to that of cTTs
disks. At least for some TDs, the process responsible of the inner disk
clearing should allow for a transfer of gas from the outer disk to the inner
region. This should proceed at a rate that does not depend on the physical
mechanism producing the gap seen in the dust emission and results in a gas
density in the inner disk similar to that of unperturbed disks around stars of
similar mass.Comment: Accepted on Astronomy & Astrophysics. Abstract shortened to fit arXiv
constraint
X-Shooter spectroscopy of young stellar objects - VI - HI line decrements
Hydrogen recombination emission lines commonly observed in accreting young
stellar objects represent a powerful tracer for the gas conditions in the
circumstellar structures. Here we perform a study of the HI decrements and line
profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra
of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar
properties of which were already derived in a previous work. We aim to obtain
information on the gas physical conditions to derive a consistent picture of
the HI emission mechanisms in pre-main sequence low-mass stars. We have
empirically classified the sources based on their HI line profiles and
decrements. We identified four Balmer decrement types (classified as 1, 2, 3,
and 4) and three Paschen decrement types (A, B, and C), characterised by
different shapes. We first discussed the connection between the decrement types
and the source properties and then compared the observed decrements with
predictions from recently published local line excitation models. One third of
the objects show lines with narrow symmetric profiles, and present similar
Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in
these sources are consistent with optically thin emission from gas with
hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are
associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B
Paschen decrements are found in conjunction with very wide line profiles and
are characteristic of strong accretors, with optically thick emission from
high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are
observed only in three sub-luminous sources viewed edge-on, so we speculate
that these are actually reddened type 2 decrements. About 20% of the objects
present type 3 Balmer decrements (bumpy), which cannot be reproduced with
current models.Comment: 29 pages, accepted by A&
X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars
Disks around T Tauri stars are known to lose mass, as best shown by the
profiles of forbidden emission lines of low ionization species. At least two
separate kinematic components have been identified, one characterised by
velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity
of few km/s (LVC). The HVC are convincingly associated to the emission of jets,
but the origin of the LVC is still unknown. In this paper we analyze the
forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus
and -Ori observed with the X-Shooter ESO spectrometer. We detect
forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and
characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We
focus our study on the LVC. We show that there is a good correlation between
line luminosity and both L and the accretion luminosity (or the
mass-accretion rate) over a large interval of values (L L; L L;
M/yr). The lines show the presence of a slow
wind ( cm), warm (T K), mostly neutral. We estimate the mass of the emitting gas and
provide a value for the maximum volume it occupies. Both quantities increase
steeply with the stellar mass, from M and
AU for M M, to
M and AU for M M, respectively.
These results provide quite stringent constraints to wind models in low mass
young stars, that need to be explored further
- ā¦