1,755 research outputs found

    Zero-Range Processes with Multiple Condensates: Statics and Dynamics

    Get PDF
    The steady-state distributions and dynamical behaviour of Zero Range Processes with hopping rates which are non-monotonic functions of the site occupation are studied. We consider two classes of non-monotonic hopping rates. The first results in a condensed phase containing a large (but subextensive) number of mesocondensates each containing a subextensive number of particles. The second results in a condensed phase containing a finite number of extensive condensates. We study the scaling behaviour of the peak in the distribution function corresponding to the condensates in both cases. In studying the dynamics of the condensate we identify two timescales: one for creation, the other for evaporation of condensates at a given site. The scaling behaviour of these timescales is studied within the Arrhenius law approach and by numerical simulations.Comment: 25 pages, 18 figure

    Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current

    Full text link
    We study the asymmetric zero-range process (ZRP) with L sites and open boundaries, conditioned to carry an atypical current. Using a generalized Doob h-transform we compute explicitly the transition rates of an effective process for which the conditioned dynamics are typical. This effective process is a zero-range process with renormalized hopping rates, which are space dependent even when the original rates are constant. This leads to non-trivial density profiles in the steady state of the conditioned dynamics, and, under generic conditions on the jump rates of the unconditioned ZRP, to an intriguing supercritical bulk region where condensates can grow. These results provide a microscopic perspective on macroscopic fluctuation theory (MFT) for the weakly asymmetric case: It turns out that the predictions of MFT remain valid in the non-rigorous limit of finite asymmetry. In addition, the microscopic results yield the correct scaling factor for the asymmetry that MFT cannot predict.Comment: 26 pages, 4 figure

    Robustness of spontaneous symmetry breaking in a bridge model

    Full text link
    A simple two-species asymmetric exclusion model in one dimension with bulk and boundary exchanges of particles is investigated for the existence of spontaneous symmetry breaking. The model is a generalization of the bridge model for which earlier studies have confirmed the existence of symmetry-broken phases, and the motivation here is to check the robustness of the observed symmetry breaking with respect to additional dynamical moves, in particular, the boundary exchange of the two species of particles. Our analysis, based on general considerations, mean-field approximation and numerical simulations, shows that the symmetry breaking in the bridge model is sustained for a range of values of the boundary exchange rate. Moreover, the mechanism through which symmetry is broken is similar to that in the bridge model. Our analysis allows us to plot the complete phase diagram of the model, demarcating regions of symmetric and symmetry-broken phases.Comment: 26 pages, 12 figures, v2: minor changes with an added appendix, published versio

    Diffusion in a logarithmic potential: scaling and selection in the approach to equilibrium

    Full text link
    The equation which describes a particle diffusing in a logarithmic potential arises in diverse physical problems such as momentum diffusion of atoms in optical traps, condensation processes, and denaturation of DNA molecules. A detailed study of the approach of such systems to equilibrium via a scaling analysis is carried out, revealing three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x ~ \sqrt{t}) and a subdiffusive (x >> \sqrt{t}) length scales, respectively; (ii) the scaling exponents and scaling functions corresponding to both regimes are selected by the initial condition; and (iii) this dependence on the initial condition manifests a "phase transition" from a regime in which the scaling solution depends on the initial condition to a regime in which it is independent of it. The selection mechanism which is found has many similarities to the marginal stability mechanism which has been widely studied in the context of fronts propagating into unstable states. The general scaling forms are presented and their practical and theoretical applications are discussed.Comment: 42 page

    Condensation and coexistence in a two-species driven model

    Full text link
    Condensation transition in two-species driven systems in a ring geometry is studied in the case where current-density relation of a domain of particles exhibits two degenerate maxima. It is found that the two maximal current phases coexist both in the fluctuating domains of the fluid and in the condensate, when it exists. This has a profound effect on the steady state properties of the model. In particular, phase separation becomes more favorable, as compared with the case of a single maximum in the current-density relation. Moreover, a selection mechanism imposes equal currents flowing out of the condensate, resulting in a neutral fluid even when the total number of particles of the two species are not equal. In this case the particle imbalance shows up only in the condensate

    Coarsening of a Class of Driven Striped Structures

    Full text link
    The coarsening process in a class of driven systems exhibiting striped structures is studied. The dynamics is governed by the motion of the driven interfaces between the stripes. When two interfaces meet they coalesce thus giving rise to a coarsening process in which l(t), the average width of a stripe, grows with time. This is a generalization of the reaction-diffusion process A + A -> A to the case of extended coalescing objects, namely, the interfaces. Scaling arguments which relate the coarsening process to the evolution of a single driven interface are given, yielding growth laws for l(t), for both short and long time. We introduce a simple microscopic model for this process. Numerical simulations of the model confirm the scaling picture and growth laws. The results are compared to the case where the stripes are not driven and different growth laws arise

    Slow Coarsening in a Class of Driven Systems

    Full text link
    The coarsening process in a class of driven systems is studied. These systems have previously been shown to exhibit phase separation and slow coarsening in one dimension. We consider generalizations of this class of models to higher dimensions. In particular we study a system of three types of particles that diffuse under local conserving dynamics in two dimensions. Arguments and numerical studies are presented indicating that the coarsening process in any number of dimensions is logarithmically slow in time. A key feature of this behavior is that the interfaces separating the various growing domains are smooth (well approximated by a Fermi function). This implies that the coarsening mechanism in one dimension is readily extendible to higher dimensions.Comment: submitted to EPJB, 13 page

    Modelling one-dimensional driven diffusive systems by the Zero-Range Process

    Full text link
    The recently introduced correspondence between one-dimensional two-species driven models and the Zero-Range Process is extended to study the case where the densities of the two species need not be equal. The correspondence is formulated through the length dependence of the current emitted from a particle domain. A direct numerical method for evaluating this current is introduced, and used to test the assumptions underlying this approach. In addition, a model for isolated domain dynamics is introduced, which provides a simple way to calculate the current also for the non-equal density case. This approach is demonstrated and applied to a particular two-species model, where a phase separation transition line is calculated

    Interaction-induced harmonic frequency mixing in quantum dots

    Full text link
    We show that harmonic frequency mixing in quantum dots coupled to two leads under the influence of time-dependent voltages of different frequency is dominated by interaction effects. This offers a unique and direct spectroscopic tool to access correlations, and holds promise for efficient frequency mixing in nano-devices. Explicit results are provided for an Anderson dot and for a molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Sum-over-states vs quasiparticle pictures of coherent correlation spectroscopy of excitons in semiconductors; femtosecond analogues of multidimensional NMR

    Full text link
    Two-dimensional correlation spectroscopy (2DCS) based on the nonlinear optical response of excitons to sequences of ultrafast pulses, has the potential to provide some unique insights into carrier dynamics in semiconductors. The most prominent feature of 2DCS, cross peaks, can best be understood using a sum-over-states picture involving the many-body eigenstates. However, the optical response of semiconductors is usually calculated by solving truncated equations of motion for dynamical variables, which result in a quasiparticle picture. In this work we derive Green's function expressions for the four wave mixing signals generated in various phase-matching directions and use them to establish the connection between the two pictures. The formal connection with Frenkel excitons (hard-core bosons) and vibrational excitons (soft-core bosons) is pointed out.Comment: Accepted to Phys. Rev.
    • …
    corecore