20 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations

    No full text
    International audienceAdult tissue repair and regeneration require stem-progenitor cells that can self-renew and generate differentiated progeny. Skeletal muscle regenerative capacity relies on muscle satellite cells (MuSCs) and their interplay with different cell types within the niche. However, our understanding of skeletal muscle tissue cellular composition is limited. Here, using a combined approach of single-cell RNA sequencing and mass cytometry, we precisely mapped 10 different mononuclear cell types in adult mouse muscle. We also characterized gene signatures and determined key discriminating markers of each cell type. We identified two previously understudied cell populations in the interstitial compartment. One expresses the transcription factor scleraxis and generated tenocytes in vitro. The second expresses markers of smooth muscle and mesenchymal cells (SMMCs) and, while distinct from MuSCs, exhibited myogenic potential and promoted MuSC engraftment following transplantation. The blueprint presented here yields crucial insights into muscle-resident cell-type identities and can be exploited to study muscle diseases

    Discrete-to-analog signal conversion in human pluripotent stem cells

    No full text
    During development, state transitions are coordinated through changes in the identity of molecular regulators in a cell state- and dose specific manner. The ability to rationally engineer such functions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein we report the generation of synthetic gene circuits that can detect a discrete cell state, and upon state detection, produce fine-tuned effector proteins in a programmable manner. Effectively, these gene circuits convert a discrete (digital-like) cell state into an analog signal by merging AND-like logic integration of endogenous miRNAs (classifiers) with a miRNA-mediated output fine-tuning technology (miSFITs). Using an automated miRNA identification and model-guided circuit optimization approach, we were able to produce robust cell state specific and graded output production in undifferentiated hPSC. We further finely controlled the levels of endogenous BMP4 secretion, which allowed us to document the effect of endogenous factor secretion in comparison to exogenous factor addition on early tissue development using the hPSC-derived gastruloid system. Our work provides the first demonstration of a discrete-to-analog signal conversion circuit operating in living hPSC, and a platform for customized cell state-specific control of desired physiological factors, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond

    Virtual cells in a virtual microenvironment recapitulate early development-like patterns in human pluripotent stem cell colonies

    No full text
    The mechanism by which morphogenetic signals engage the regulatory networks responsible for early embryonic tissue patterning is incompletely understood. Here, we developed a minimal gene regulatory network (GRN) model of human pluripotent stem cell (hPSC) lineage commitment and embedded it into “cellular” agents that respond to a dynamic morphogenetic signaling microenvironment. Simulations demonstrated that GRN wiring had significant non-intuitive effects on tissue pattern order, composition, and dynamics. Experimental perturbation of GRN connectivities supported model predictions and demonstrated the role of OCT4 as a master regulator of peri-gastrulation fates. Our so-called GARMEN strategy provides a multiscale computational platform to understand how single-cell-based regulatory interactions scale to tissue domains. This foundation provides new opportunities to simulate the impact of network motifs on normal and aberrant tissue development. </p

    Synthetic gene circuits for cell state detection and protein tuning in human pluripotent stem cells

    No full text
    During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type- and dose-specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND-like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine-tuned levels of output proteins using an miRNA-mediated output fine-tuning technology (miSFITs). Specifically, we created an "hPSC ON" circuit using a model-guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC-specific detection and graded output protein production. Next, we used an empirical approach to create an "hPSC-Off" circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state-specific and fine-tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state-specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.ISSN:1744-429

    Neutralizing Anti-Granulocyte Macrophage-Colony Stimulating Factor Autoantibodies Recognize Post-Translational Glycosylations on Granulocyte Macrophage-Colony Stimulating Factor Years Before Diagnosis and Predict Complicated Crohn’s Disease

    No full text
    International audienceBackground & aims: Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD.Methods: We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis.Results: Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa.Conclusions: Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis
    corecore