26 research outputs found

    On quasilinear parabolic evolution equations in weighted Lp-spaces II

    Get PDF
    Our study of abstract quasi-linear parabolic problems in time-weighted L_p-spaces, begun in [17], is extended in this paper to include singular lower order terms, while keeping low initial regularity. The results are applied to reaction-diffusion problems, including Maxwell-Stefan diffusion, and to geometric evolution equations like the surface-diffusion flow or the Willmore flow. The method presented here will be applicable to other parabolic systems, including free boundary problems.Comment: 21 page

    Parabolic equations with dynamical boundary conditions and source terms on interfaces

    Get PDF
    We consider parabolic equations with mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hypersurface, enforcing a jump in the conormal derivative. Only minimal regularity assumptions on the domain and the coefficients are imposed. It is shown that the corresponding linear operator enjoys maximal parabolic regularity in a suitable LpL^p-setting. The linear results suffice to treat also the corresponding nondegenerate quasilinear problems.Comment: 30 pages. Revised version. To appear in Annali di Matematica Pura ed Applicat

    Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Full text link
    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis

    Maximal regularity for non-autonomous equations with measurable dependence on time

    Get PDF
    In this paper we study maximal LpL^p-regularity for evolution equations with time-dependent operators AA. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the LpL^p-boundedness of a class of vector-valued singular integrals which does not rely on H\"ormander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of mm-th order elliptic operators AA with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an Lp(Lq)L^p(L^q)-theory for such equations for p,q(1,)p,q\in (1, \infty). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication in Potential Analysi

    The s\ell^s-boundedness of a family of integral operators on UMD Banach function spaces

    Full text link
    We prove the s\ell^s-boundedness of a family of integral operators with an operator-valued kernel on UMD Banach function spaces. This generalizes and simplifies earlier work by Gallarati, Veraar and the author, where the s\ell^s-boundedness of this family of integral operators was shown on Lebesgue spaces. The proof is based on a characterization of s\ell^s-boundedness as weighted boundedness by Rubio de Francia.Comment: 13 pages. Generalization of arXiv:1410.665
    corecore