353 research outputs found

    How do the blind ‘see’? The role of spontaneous brain activity in self-generated perception

    Get PDF
    Spontaneous activity of the human brain has been well documented, but little is known about the functional role of this ubiquitous neural phenomenon. It has previously been hypothesized that spontaneous brain activity underlies unprompted (internally generated) behaviour. We tested whether spontaneous brain activity might underlie internally-generated vision by studying the cortical visual system of five blind/visually-impaired individuals who experience vivid visual hallucinations (Charles Bonnet syndrome). Neural populations in the visual system of these individuals are deprived of external input, which may lead to their hyper-sensitization to spontaneous activity fluctuations. To test whether these spontaneous fluctuations can subserve visual hallucinations, the functional MRI brain activity of participants with Charles Bonnet syndrome obtained while they reported their hallucinations (spontaneous internally-generated vision) was compared to the: (i) brain activity evoked by veridical vision (externally-triggered vision) in sighted controls who were presented with a visual simulation of the hallucinatory streams; and (ii) brain activity of non-hallucinating blind controls during visual imagery (cued internally-generated vision). All conditions showed activity spanning large portions of the visual system. However, only the hallucination condition in the Charles Bonnet syndrome participants demonstrated unique temporal dynamics, characterized by a slow build-up of neural activity prior to the reported onset of hallucinations. This build-up was most pronounced in early visual cortex and then decayed along the visual hierarchy. These results suggest that, in the absence of external visual input, a build-up of spontaneous fluctuations in early visual cortex may activate the visual hierarchy, thereby triggering the experience of vision

    A new approach for uncovering student resources with multiple-choice questions

    Full text link
    The traditional approach to studying student understanding presents a question and uses the student answers to make inferences about their knowledge. However, this method does not capture the range of possible alternative ideas available to students. We use a new approach, asking students to generate a plausible explanation for every choice of a multiple-choice question, to capture a range of explanations that students can generate in answering physics questions. Asking 16 students to provide explanations in this way revealed alternative possibilities for student thinking that would not have been captured if they only provided one solution. The findings show two ways these alternatives can be productive for learning physics: (i) even students who ultimately chose the wrong answer could often generate the correct explanation and (ii) many incorrect explanations contained elements of correct physical reasoning. We discuss the instructional implications of this multiple-choice questioning approach and of student alternative ideas

    What memory representation is acquired during nonword speech production learning? The influence of stimulus features and training modality on nonword encoding

    Get PDF
    The purpose of this research was to investigate memory representations related to speech processing. Psycholinguistic and speech motor control theorists have hypothesized a variety of fundamental memory representations, such as syllables or phonemes, which may be learned during speech acquisition tasks. Yet, it remains unclear which fundamental representations are encoded and retrieved during learning and generalization tasks. Two experiments were conducted using a motor learning paradigm to investigate if representations for syllables and phonemes were acquired during a nonword repetition task. Additionally, different training modalities were implemented across studies to examine if training modality influenced memory encoding for nonword stimuli. Results suggest multiple representations may be acquired during training regardless of training modality; however, the underlying memory representations learned during training may be less abstract than current models hypothesize

    A unifying principle underlying the extracellular field potential spectral responses in the human cortex

    Get PDF
    Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent chi of the 1/f(chi) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks\u27 height was correlated with the 1/f(chi) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(chi) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal

    Report of the Implementation of Work Package 6 "Implementation of Methodology" in the Framework of the IRNet Project

    Get PDF
    This article, prepared by an international team of researchers from different scientific areas connected with ICT, e-learning, pedagogy, and other related disciplines, focuses on the objectives and some results of the international project IRNet (www.irnet.us.edu.pl). In particular, the article describes research tools, methods, and a procedure of the Work Package 6 “Implementation of Methodology,” that is, objectives, tasks, deliverables, publications, and implementation of research trips in the context of the next stages and Work Packages of IRNet project – International Research Network

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Neuroblastoma Cell Death is Induced by Inorganic Arsenic Trioxide (As2O3) and Inhibited by a Normal Human Bone Marrow Cell-Derived Factor

    Get PDF
    Three phenotypically distinct cell types are present in human neuroblastomas (NB) and NB cell lines: I-type stem cells, N-type neuroblastic precursors, and S-type Schwannian/melanoblastic precursors. The stimulation of human N-type neuroblastoma cell proliferation by normal human bone marrow monocytic cell conditioned medium (BMCM) has been demonstrated in vitro, a finding consistent with the high frequency of bone marrow (BM) metastases in patients with advanced NB. Inorganic arsenic trioxide (As2O3), already clinically approved for the treatment of several hematological malignancies, is currently under investigation for NB. Recent studies show that As2O3 induces apoptosis in NB cells. We examined the impact of BMCM on growth and survival of As2O3-treated NB cell lines, to evaluate the response of cultured NB cell variants to regulatory agents. We studied the effect of BMCM on survival and clonogenic growth of eleven As2O3-treated NB cell lines grown in sparsely seeded, non-adherent, semi-solid cultures. As2O3 had a strong inhibitory effect on survival of all tested NB cell lines. BMCM augmented cell growth and survival and reversed the inhibitory action of As2O3 in all tested cell lines, but most strongly in N-type cells. While As2O3 effectively reduced survival of all tested NB cell lines, BMCM effectively impacted its inhibitory action. Better understanding of micro-environmental regulators affecting human NB tumor cell growth and survival may be seminal to the development of therapeutic strategies and clinically effective agents for this condition

    Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Get PDF
    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions
    corecore