36 research outputs found

    Pressure induced metallization of Cu3N

    Full text link
    We employed accurate full potential density-functional theory and linearized augmented plane wave method to investigate the electronic properties and possible phase transitions of Cu3N under high pressure. The anti perovskite structure Cu3N is a semiconductor with a small indirect band gap at ambient pressure. The band gap becomes narrower with increasing pressure, and the semi-conducting anti ReO3 structure undergoes a semiconductor to semimetal transition at pressure around 8.0 GPa. At higher pressure, a subsequent semimetal to metal transition could take place above 15GPa with a structural transition from anti ReO3 to Cu3Au structure

    Psicoterapia y problemas actuales. Debates y alternativas

    Get PDF
    Ante la proliferaci贸n de fen贸menos psicosociales, como el suicidio, la violencia sexual, los trastornos del comportamiento alimenticio y las crisis de identidad, emerge esta obra, como una respuesta reflexiva que aborda desde una pluralidad de perspectivas el quehacer psicoterap茅utico, para favorecer una comprensi贸n amplia de estas situaciones problema y ofrecer, desde la experiencia de sus autores, alternativas de entendimiento y de desarrollo de tratamientos para la atenci贸n de quienes las viven. El objetivo es compartir una comprensi贸n innovadora de la pr谩ctica del psicoterapeuta, desde una mirada caracterizada por el di谩logo interdisciplinario. Ello a partir de la recuperaci贸n de las estrategias implementadas frente a distintas coyunturas, as铆 como a trav茅s de la reflexi贸n personal en torno a la formaci贸n y el ejercicio profesional del psicoterapeuta, que pueden favorecer la retroalimentaci贸n y la generaci贸n de formas de intervenci贸n m谩s adecuadas a la realidad de algunos dilemas contempor谩neos y de los entornos en que estos se desenvuelven. Un libro recomendable para estudiantes, docentes y profesionales en el campo de la psicoterapia y la salud psicosocial.ITESO. A.C

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A SARS-CoV-2 protein interaction map reveals targets for drug repurposing

    Get PDF
    The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19
    corecore