30,024 research outputs found

    Fearless: Ally Siegel

    Full text link
    Encouraging and mentoring young minds, consistently finding new ways to use her love of climbing and adventure to promote character and leadership development, and always ready for the next big challenge, Ally Siegel ’16 fearlessly pushes herself to achieve more, inspiring others to do the same. [excerpt

    Newburgh, Town of and CSEA, Town of Newburgh Unit, Orange County Local 836

    Get PDF
    In the Matter of the Fact-Finding between The Town of Newburgh, Public Employer, and The Civil Service Employees Association, Town of Newburgh Unit, Orange County Local 836, Employee Organization. Case No. M2005-177. BEFORE: Jay M. Siegel, Esq., Impartial Fact Finde

    The performance and capabilities of terrestial organisms in extreme and unusual gaseous and liquid environments

    Get PDF
    Inhibitor effects of psilotin, MnO2, and D2O on substances existing in nature to determine performance of terrestrial organisms in extreme and unusual gaseous and liquid environment

    Magnetic field amplification in hypermassive neutron stars via the magnetorotational instability

    Get PDF
    Mergers of binary neutron stars likely lead to the formation of a hypermassive neutron star (HMNS), which is metastable and eventually collapses to a black hole. This merger scenario is thought to explain the phenomenology of short gamma-ray bursts (SGRBs). The very high energies observed in SGRBs have been suggested to stem from neutrino-antineutrino annihilation and/or from very strong magnetic fields created during or after the merger by mechanisms like the magnetorotational instability (MRI). Here, we report on results that show for the first time the development of the MRI in HMNSs in three-dimensional, fully general-relativistic magnetohydrodynamic simulations. This instability amplifies magnetic fields exponentially and could be a vital ingredient in solving the SGRB puzzle.Comment: 6 pages, 3 figures. Proceedings of the Karl Schwarzschild Meeting 201

    An upper bound from helioseismology on the stochastic background of gravitational waves

    Full text link
    The universe is expected to be permeated by a stochastic background of gravitational radiation of astrophysical and cosmological origin. This background is capable of exciting oscillations in solar-like stars. Here we show that solar-like oscillators can be employed as giant hydrodynamical detectors for such a background in the muHz to mHz frequency range, which has remained essentially unexplored until today. We demonstrate this approach by using high-precision radial velocity data for the Sun to constrain the normalized energy density of the stochastic gravitational-wave background around 0.11 mHz. These results open up the possibility for asteroseismic missions like CoRoT and Kepler to probe fundamental physics.Comment: 6 pages, 2 figures. Updated to match published versio

    Implementing the syntax of japanese numeral classifiers

    Get PDF
    While the sortal constraints associated with Japanese numeral classifiers are wellstudied, less attention has been paid to the details of their syntax. We describe an analysis implemented within a broadcoverage HPSG that handles an intricate set of numeral classifier construction types and compositionally relates each to an appropriate semantic representation, using Minimal Recursion Semantics

    A method for predicting interfacial freezing of a liquid flowing over a cold surface

    Get PDF
    Instantaneous thickness of a frozen layer is a function of specific heat, heat of fusion, temperatures, the frozen layer thickness at equilibrium, the thermal conductivity, and heat transfer coefficient. The equation can be evaluated on a desk calculator

    The evolution of a slender non-axisymmetric drop in an extensional flow

    Get PDF
    An asymptotic method for analysing slender non-axisymmetric drops, bubbles and jets in a general straining flow is developed. The method relies on the slenderness of the geometry to reduce the three-dimensional equations to a sequence of weakly coupled, quasi-two-dimensional Stokes flow problems for the cross-sectional evolution. Exact solution techniques for the flow outside a bubble in two-dimensional Stokes flow are generalised to solve for the transverse flow field, allowing large non-axisymmetric deformations to be described. A generalisation to the case where the interior contains a slightly viscous fluid is also presented. Our method is used to compute steady non-axisymmetric solution branches for inviscid bubbles and slightly viscous drops. We also present unsteady numerical solutions showing how the eccentricity of the cross-section adjusts to a non-axisymmetric external flow. Finally, we use our theory to investigate how the pinch-off of a jet of relatively inviscid fluid is affected by a two-dimensional straining cross-flow

    Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra

    Get PDF
    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality with the ground-based advanced LIGO/Virgo GW detector network starting its first science run this year. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission starting from an early baryonic wind phase and resulting in a final pulsar wind nebula that is confined by the previously ejected material. Lightcurves and spectra are computed for a wide range of post-merger physical properties and particular attention is paid to the emission in the X-ray band. In the context of SGRB afterglow modeling, we present X-ray lightcurves corresponding to the 'standard' and the recently proposed 'time-reversal' scenario (SGRB prompt emission produced at the time of merger or at the time of collapse of the long-lived NS). The resulting afterglow lightcurve morphologies include, in particular, single and two-plateau features with timescales and luminosities that are in good agreement with the observations by the Swift satellite. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario. If found, such a signal would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient signal peaking in the X-ray band ...Comment: 20 pages, 16 figure
    corecore