10,274 research outputs found

    On the danger of redundancies in some aerospace mechanisms

    Get PDF
    An attempt is made to show that redundancies in some aerospace mechanisms do not generally improve the odds for success. Some of these redundancies may even be the very cause for failure of the system. To illustrate this fallacy, two designs based on the Control of Flexible Structures I (COFS I) Mast deployer and retractor assembly (DRA) are presented together with novel designs to circumvent such design inadequacies, while improving system reliability

    Casimir effect across a layered medium

    Full text link
    Using nonstandard recursion relations for Fresnel coefficients involving successive stacks of layers, we extend the Lifshitz formula to configurations with an inhomogeneous, n-layered, medium separating two planar objects. The force on each object is the sum of a Lifshitz like force and a force arising from the inhomogeneity of the medium. The theory correctly reproduces very recently obtained results for the Casimir force/energy in some simple systems of this kind. As a by product, we obtain a formula for the force on an (unspecified) stack of layers between two planar objects which generalizes our previous result for the force on a slab in a planar cavity.Comment: 5 pages, 1 figure, presented at QFEXT1

    The thermal history of the Western Irish onshore

    Get PDF
    We present here a low-temperature thermochronological study that combines the apatite fission-track and (U + Th)/He dating methods with a pseudo-vertical sampling approach to generate continuous and well-constrained temperature–time histories from the onshore Irish Atlantic margin. The apatite fission-track and (U + Th)/He ages range from the Late Jurassic to Early Cretaceous and the mean track lengths are relatively short. Thermal histories derived from inverse modelling show that following post-orogenic exhumation the sample profiles cooled to c. 75 °C. A rapid cooling event to surface temperatures occurred during the Late Jurassic to Early Cretaceous and was diachronous from north to south. It was most probably caused by c. 2.5 km of rift-shoulder related exhumation and can be temporally linked to the main stage of Mesozoic rifting in the offshore basins. A slow phase of reheating during the Late Cretaceous and Early Cenozoic is attributed to the deposition of a thick sedimentary sequence that resulted in c. 1.5 km of burial. Our data imply a final pulse of exhumation in Neogene times, probably related to compression of the margin. However, it is possible that an Early Cenozoic cooling event, compatible with our data but not seen in our inverse models, accounts for part of the Cenozoic exhumation

    PRODUCTION OF ETHANOL BY FED-BATCH FERMENTATION

    Get PDF
    The production of ethanol, from glucose in batch and fed batch culture, was investigated. In the fed batch culture, the glucose feeding was added into the culture at 16th hour of fermentation. The effects of different glucose concentration feeding rates on ethanol fermentation were investigated for fed batch culture. The 2gL-1hr-1 glucose concentration feeding rate was found to give higher ethanol yield (2.47 g ethanol g glucose-1), with respect to substrate consumed as compared to 8 gL-1hr-1 (0.23 g ethanol g glucose-1) and 4 gL-1hr-1 (0.20 g ethanol g glucose-1). The ethanol yield with respect to substrate consumed obtained in batch culture was 0.81 g ethanol g glucose-1. The fed batch culture at 2 gL-1hr-1 glucose concentration feeding rate was proven to be a better fermentation system than the batch culture. The specific growth rate, specific glucose consumption rate and specific ethanol production rate for the fed batch fermentation, at 2 gL-1hr-1 glucose concentration feeding rate, were 0.065 hr-1, 1.20 hr-1 and 0.0009 hr-1, respectively

    Mercury in the environs of the north slope of Alaska

    Get PDF
    The analysis of Greenland ice suggests that the flux of mercury from the continents to the atmosphere has increased in recent times, perhaps partly as a result of the many of man’s activities that effect an alteration of terrestrial surfaces. Upon the exposure of fresh crustal matter, the natural outgassing of mercury vapor from the earth’s surface could be enhanced. Accordingly, mercury was measured in a variety of environmental materials gathered from the North Slope of Alaska to provide background data prior to the anticipated increase of activity in this environment. The materials were collected during the U. S. Coast Guard WEBSEC 72-73 cruises as well as through the facilities provided by Naval Arctic Research Laboratory in the spring of 1973. The method of measurement depended upon radioactivation of mercury with neutrons and the subsequent quantification of characteristic gamma radiations after radiochemical purification. Mercury concentrations in seawater at several locations in the vicinity of 151°W, 71°N averaged 20 parts per trillion. The waters from all stations east of this location showed a significantly smaller concentration. This difference may relate to penetration o f Bering- Chukchi Sea water into the southern Beaufort Sea to 151°W. Marine sediments on the shelf and slope between 143°W and 153°W contained about 100 parts per billion mercury, except for those on the continental shelf between Barter Island and the Canning River, where the concentration was less than half this value. These results are consistent with sediment input from the respective rivers when their mercury content and mineralogy are considered. The mercury content of river waters was 18 ppt and in reasonable agreement with the average of snow samples (13 ppt). The burden of mercury in plankton was 37 ppb.This work was supported by the office of Naval Research under grant N R 083-290

    Role of the TIGIT Immune Checkpoint Pathway in the Eradication of HIV Infection.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Magnetic draping of merging cores and radio bubbles in clusters of galaxies

    Full text link
    Sharp fronts observed by Chandra satellite between dense cool cluster cores moving with near-sonic velocity through the hotter intergalactic gas, require strong suppression of thermal conductivity across the boundary. This may be due to magnetic fields tangential to the contact surface separating two plasma components. We point out that a super-Alfvenic motion of a plasma cloud (a core of a merging galaxy) through a weakly magnetized intercluster medium leads to "magnetic draping", formation of a thin, strongly magnetized boundary layer with a tangential magnetic field. For supersonic cloud motion, M_s > 1, magnetic field inside the layer reaches near-equipartition values with thermal pressure. Typical thickness of the layer is L /M_A^2 << L, where L is the size of the obstacle (plasma cloud) moving with Alfven Mach number M_A >> 1. To a various degree, magnetic draping occurs both for sub- and supersonic flows, random and ordered magnetic fields and it does not require plasma compressibility. The strongly magnetized layer will thermally isolate the two media and may contribute to the Kelvin-Helmholtz stability of the interface. Similar effects occur for radio bubbles, quasi-spherical expanding cavities blown up by AGN jets; in this case the thickness of the external magnetized layer is smaller, L /M_A^3 << L.Comment: 16 pages, 2 figure

    Physical activity education in the undergraduate curricula of all UK medical schools: are tomorrow's doctors equipped to follow clinical guidelines?

    Get PDF
    Physical activity (PA) is a cornerstone of disease prevention and treatment. There is, however, a considerable disparity between public health policy, clinical guidelines and the delivery of physical activity promotion within the National Health Service in the UK. If this is to be addressed in the battle against non-communicable diseases, it is vital that tomorrow's doctors understand the basic science and health benefits of physical activity. The aim of this study was to assess the provision of physical activity teaching content in the curricula of all medical schools in the UK. Our results, with responses from all UK medical schools, uncovered some alarming findings, showing that there is widespread omission of basic teaching elements, such as the Chief Medical Officer recommendations and guidance on physical activity. There is an urgent need for physical activity teaching to have dedicated time at medical schools, to equip tomorrow's doctors with the basic knowledge, confidence and skills to promote physical activity and follow numerous clinical guidelines that support physical activity promotion
    corecore