17 research outputs found

    Insulin-chitosan polyelectrolyte _anocomplexes: preparation, characterization and stabilization of insulin

    Get PDF
    Objectives: To formulate chitosan nanoparticles with specific combinations of molecular weight and degree of deacetylation (DDA) that could be developed into an oral insulin delivery system. Methods: This study was conducted at Jordanian Pharmaceutical Manufacturing Company (JPM), Jordan in the period 2006-2009. Nanoparticles were prepared by polyelectrolyte complexation method (PEC). The physicochemical characteristics of the nanoparticles were evaluated. The role of nanoparticles in stabilization of insulin at high temperature and protecting insulin from pancreatic degradation was investigated.Results: The PEC formation process is influenced by a variety of parameters, including the system pH, chitosan molecular weight and DDA. The most important factor appears to be the system pH.All insulin-chitosan complexes displayed positive zeta potential. PECs protect insulin from pancreatin and the protective ability affected by DDA of chitosan. The results of insulin stability indicate that insulin-chitosan PEC protects insulin from degradation for at least 24 h.Conclusions: Molecular parameters of chitosan nanoparticles play an important role in stabilization of insulin in the GIT. So we can modulate relative parameters to develop an oral insulin delivery system.Key Words: Insulin, Chitosan, Polyelectrolyte complexes, Nanoparticles

    Elucidation of the controlled-release behavior of metoprolol succinate from directly compressed xanthan gum-chitosan polymers: computational and experimental studies

    Get PDF
    The development and evaluation of a controlled-release (CR) pharmaceutical solid dosage form comprising xanthan gum (XG), low molecular weight chitosan (LCS) and metoprolol succinate (MS) is reported. The research is, partly, based upon the utilization of computational tools; in this case molecular dynamics simulations (MDs) and response surface method (RSM), in order to underpin the design/prediction and to minimize the experimental work required to achieve the desired pharmaceutical outcomes. The capability of the system to control the release of MS was studied as a function of LCS (% w/w) and total polymer (LCS and XG) to drug ratio (P:D) at different tablet tensile strengths. MDs trajectories, obtained by using different ratios of XG:LCS as well as XG and high molecular weight CS (HCS), showed that the driving force for the interaction between XG and LCS is electrostatic in nature, the most favourable complex is formed when LCS is used at 15 % (w/w) and, importantly, that the interaction between XG and LCS is more favourable than that between XG and HCS. RSM outputs revealed that the release of the drug from the LCS/XG matrix is highly dependent on both the % LCS and the P:D ratio and that the required CR effect can be achieved when using weight fractions of LCS ≤ 20% and P:D ratios ≥ 2.6:1. Results obtained from in-vitro drug release and swelling studies on the prepared tablets showed that using LCS at the weight fractions suggested by MDs and RSM data plays a major role in overcoming the high sensitivity of the controlled drug release effect of XG on ionic strength and pH changes of the dissolution media. In addition, it was found that polymer relaxation is the major contributor to the release of MS from LCS-XG tablets. Using Raman spectroscopy, MS was shown to be localized more in the core of the tablets at the initial stages of dissolution due to film formation between LCS and XG on the tablet surface which prevents excess water penetration into the matrix. In the later stages of the dissolution process, the film starts to dissolve/erode allowing full tablet hydration and a uniform drug distribution in the swollen tablet

    Bioadhesive Controlled Metronidazole Release Matrix Based on Chitosan and Xanthan Gum

    Get PDF
    Metronidazole, a common antibacterial drug, was incorporated into a hydrophilic polymer matrix composed of chitosan xanthan gum mixture. Hydrogel formation of this binary chitosan-xanthan gum combination was tested for its ability to control the release of metronidazole as a drug model. This preparation (MZ-CR) was characterized by in vitro, ex vivo bioadhesion and in vivo bioavailability study. For comparison purposes a commercial extended release formulation of metronidazole (CMZ) was used as a reference. The in vitro drug-release profiles of metronidazole preparation and CMZ were similar in 0.1 M HCl and phosphate buffer pH 6.8. Moreover, metronidazole preparation and CMZ showed a similar detachment force to sheep stomach mucosa, while the bioadhesion of the metronidazole preparation was higher three times than CMZ to sheep duodenum. The results of in vivo study indicated that the absorption of metronidazole from the preparation was faster than that of CMZ. Also, MZ-CR leads to higher metronidazole Cmax and AUC relative to that of the CMZ. This increase in bioavailability might be explained by the bioadhesion of the preparation at the upper part of the small intestine that could result in an increase in the overall intestinal transit time. As a conclusion, formulating chitosan-xanthan gum mixture as a hydrophilic polymer matrix resulted in a superior pharmacokinetic parameters translated by better rate and extent of absorption of metronidazole

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Low Molecular Weight Chitosan-Insulin Complexes Solubilized in a Mixture of Self-Assembled Labrosol and Plurol Oleaque and Their Glucose Reduction Activity in Rats

    No full text
    Oral insulin delivery that better mimics physiological pathways is a necessity as it ensures patient comfort and compliance. A system which is based on a vehicle of nano order where positively charged chitosan interacts with negatively charged insulin and forms a polyelectrolyte complex (PEC) solubilizate, which is then solubilized into an oily phase of oleic acid, labrasol, and plurol oleaque-protects insulin against enzymatic gastrointestinal reduction. The use of an anionic fatty acid in the oily phase, such as oleic acid, is thought to allow an interaction with cationic chitosan, hence reducing particle size. Formulations were assessed based on their hypoglycaemic capacities in diabetic rats as compared to conventional subcutaneous dosage forms. 50 IU/kg oral insulin strength could only induce blood glucose reduction equivalent to that of 5 IU/kg (1 International unit = 0.0347 mg of human insulin). Parameters that influence the pharmacological availability were evaluated. A preliminary investigation of the mechanism of absorption suggests the involvement of the lymphatic route

    Factors involved in formulation of oily delivery system for proteins based on PEG-8 caprylic/capric glycerides and polyglyceryl-6 dioleate in a mixture of oleic acid with Chitosan

    No full text
    Systematic experimental work is required to improve knowledge related to the use of oily delivery systems. This work aimed to examine the influence of different molecular weights chitosan on formation and solubilization ability of w/o system of Labrasol, Plurol Oleique, water and oleic acid. Phase diagrams were constructed. Size measurements were performed for each surfactant in oleic acid. Interfacial tension of chitosan was measured between oleic acid and water at pH 1.5 and 6.25. Effect of chitosan on microemulsion size was studied. When used to deliver rh insulin to diabetic rats, the mixture showed reduction in blood glucose compared to control
    corecore