86 research outputs found

    Impact of Sodium Layer variations on the performance of the E-ELT MCAO module

    Full text link
    Multi-Conjugate Adaptive Optics systems based on sodium Laser Guide Stars may exploit Natural Guide Stars to solve intrinsic limitations of artificial beacons (tip-tilt indetermination and anisoplanatism) and to mitigate the impact of the sodium layer structure and variability. The sodium layer may also have transverse structures leading to differential effects among Laser Guide Stars. Starting from the analysis of the input perturbations related to the Sodium Layer variability, modeled directly on measured sodium layer profiles, we analyze, through a simplified end-to-end simulation code, the impact of the low/medium orders induced on global performance of the European Extremely Large Telescope Multi-Conjugate Adaptive Optics module MAORY.Comment: 7 pages, 5 figures, SPIE conference Proceedin

    Massive Star cluster formation under the microscope at z=6

    Get PDF
    We report on a superdense star-forming region with an effective radius (R_e) smaller than 13 pc identified at z=6.143 and showing a star-formation rate density \Sigma_SFR~1000 Msun/yr/kpc2 (or conservatively >300 Msun/yr/kpc2). Such a dense region is detected with S/N>40 hosted by a dwarf extending over 440 pc, dubbed D1 (Vanzella et al. 2017b). D1 is magnified by a factor 17.4+/-5.0 behind the Hubble Frontier Field galaxy cluster MACS~J0416 and elongated tangentially by a factor 13.2+/-4.0 (including the systematic errors). The lens model accurately reproduces the positions of the confirmed multiple images with a r.m.s. of 0.35", and the tangential stretch is well depicted by a giant multiply-imaged Lya arc. D1 is part of an interacting star-forming complex extending over 800 pc. The SED-fitting, the very blue ultraviolet slope (\beta ~ -2.5, F(\lambda) ~ \lambda^\beta) and the prominent Lya emission of the stellar complex imply that very young (< 10-100 Myr), moderately dust-attenuated (E(B-V)<0.15) stellar populations are present and organised in dense subcomponents. We argue that D1 (with a stellar mass of 2 x 10^7 Msun) might contain a young massive star cluster of M < 10^6 Msun and Muv~-15.6 (or m_uv=31.1), confined within a region of 13 pc, and not dissimilar from some local super star clusters (SSCs). The ultraviolet appearance of D1 is also consistent with a simulated local dwarf hosting a SSC placed at z=6 and lensed back to the observer. This compact system fits into some popular globular cluster formation scenarios. We show that future high spatial resolution imaging (e.g., E-ELT/MAORY-MICADO and VLT/MAVIS) will allow us to spatially resolve light profiles of 2-8 pc.Comment: 21 pages, 14 figures, 1 table, MNRAS accepte

    MAD Adaptive Optics Imaging of High Luminosity Quasars: A Pilot Project

    Get PDF
    We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.Comment: 19 pages, 12 figures, accepted for pubblication in The Astronomical Journa

    On the radio and NIR jet of PKS 2155-304 and its close environment

    Full text link
    PKS 2155-304 is one of the brightest BL Lac object in the sky and a very well studied target from radio to TeV bands. We report on high-resolution (~ 0.12 arcsec) direct imaging of the field of PKS 2155-304 using adaptive optics near-IR observations in J and Ks bands obtained with the ESO multi-conjugate adaptive optic demonstrator (MAD) at the Very Large Telescope. These data are complemented with archival VLA images at various frequencies to investigate the properties of the close environment of the source. We characterized the faint galaxies that form the poor group associated to the target. No radio emission is present for these galaxies, while an old radio jet at ~ 20 kpc from the nucleus of PKS 2155-304 and a jet-like structure of ~ 2 kpc (~ 1 arcsec) in the eastern direction are revealed. No counterparts of these radio jets are found in the NIR or in archival Chandra observations.Comment: 10 pages, 7 figures, accepted for publication in The Astronomical Journa

    Observations of Isolated Neutron Stars with the ESO Multi-Conjugate Adaptive Optics Demonstrator

    Get PDF
    High-energy observations have unveiled peculiar classes of isolated neutron stars which, at variance with radio pulsars, are mostly radio silent and not powered by the star rotation. Among these objects are the magnetars, hyper-magnetized neutron stars characterized by transient X-ray/gamma-ray emission, and neutron stars with purely thermal, and in most cases stationary, X-ray emission (a.k.a., X-ray dim isolated neutron stars or XDINSs). While apparently dissimilar in their high-energy behavior and age, both magnetars and XDINSs have similar periods and unusually high magnetic fields. This suggests a tantalizing scenario where the former evolve into the latter.Discovering so far uninvestigated similarities between the multi-wavelength properties of these two classes would be a further step forward to establish an evolutionary scenario. A most promising channels is the near infrared (NIR) one, where magnetars are characterized by a distinctive spectral flattening with respect to the extrapolation of the soft X-ray spectrum.We observed the two XDINSs RX J0420.0-5022 and RX J1856.5-3754 with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) at the Very Large Telescope (VLT) as part of the instrument guaranteed time observations program, to search for their NIR counterparts. Both RX J1856.5-3754 and RX J0420.0-5022 were not detected down to K_s ~20 and Ks ~21.5, respectively. In order to constrain the relation between XDINSs and magnetars it would be of importance to perform deeper NIR observations. A good candidate is 1RXS J214303.7+065419 which is the XDINS with the highest inferred magnetic field.Comment: Accepted for publication in Astronomy and Astrophysic

    Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm

    Full text link
    Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the Weighted Center of Gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.Comment: 10 pages, 14 figure

    The jet of the BL Lac object PKS 0521 -365 in the near-IR : MAD adaptive optics observations

    Get PDF
    BL Lac objects are low--power active nuclei exhibiting a variety of peculiar properties that are caused by the presence of a relativistic jet and orientation effects. We present here adaptive optics near-IR images at high spatial resolution of the nearby BL Lac object PKS 0521-365, which is known to display a prominent jet both at radio and optical frequencies. The observations were obtained in Ks--band using the ESO multi-conjugated adaptive optics demonstrator at the Very Large Telescope. This allowed us to obtain images with 0.1 arcsec effective resolution. We performed a detailed analysis of the jet and its related features from the near-IR images, and combined them with images previously obtained with HST in the R band and by a re-analysis of VLA radio maps. We find a remarkable similarity in the structure of the jet at radio, near-IR, and optical wavelengths. The broad--band emission of the jet knots is dominated by synchrotron radiation, while the nucleus also exhibits a significant inverse Compton component. We discovered the near-IR counterpart of the radio hotspot and found that the near-IR flux is consistent with being a synchrotron emission from radio to X-ray. The bright red object (red-tip), detached but well aligned with the jet, is well resolved in the near-IR and has a linear light profile. Since it has no radio counterpart, we propose that it is a background galaxy not associated with the jet. The new adaptive optics near-IR images and previous observations at other frequencies allow us to study the complex environment around the remarkable BL Lac object PKS 0521-365. These data exemplify the capabilities of multi conjugate adaptive optics observations of extragalactic extended sources.Comment: accepted for publication in Astronomy and Astrophysics 9 pages. A & A 2009, in pres

    Deep into the core of dense star clusters: An astrometric and photometric test case for ELT

    Get PDF
    We present a novel analysis of a young star cluster in the Large Magellanic cloud, R136- like, as seen by the Extremely Large Telescope (ELT). The main aim of this study is to quantify precision and accuracy of stellar proper motion measurements in crowded field when using an ELT working at its diffraction limit. This can serve as a reference study for future development of ELT scientific cases. In particular, we investigate our future ability to detect the dynamical signature of intermediate-mass black holes (IMBHs) with mass ∼104 M⊙ through detailed measurements of stellar proper motions. We have simulated two N-body dynamical cluster models with and without an IMBH. For each model, we have chosen two snapshots temporally spaced by 5 yr. Stellar fluxes in IJHK filters and star positions have been used to create ELT mock images for both single- and multiconjugate adaptive optics observing modes following the requierements given by ESO technical specifications for the first light imager. These images have been analysed using a classical software for seeing-limited data reduction, DAOPHOT/ALLSTAR. We make accurate photometry till the very faint pre-main-sequence stars, i.e. depending on the adaptive optics (AO) mode, magnitudes down to K ∼ 24 mag (singleconjugate AO) or K ∼ 22 mag (multiconjugate AO) in a total integration time of 20 min on target. Although DAOPHOT suite of programs is not devoted to precise astrometry, the astrometric accuracy is impressive, reaching few μas yr-1 or km s-1. In these assumptions, we are able to detect the IMBH signature at the centre of the cluster

    Resolving Stellar Populations outside the Local Group: MAD observations of UKS2323-326

    Full text link
    We present a study aimed at deriving constraints on star formation at intermediate ages from the evolved stellar populations in the dwarf irregular galaxy UKS2323-326. These observations were also intended to demonstrate the scientific capabilities of the multi-conjugated adaptive optics demonstrator (MAD) implemented at the ESO Very Large Telescope as a test-bench of adaptive optics (AO) techniques. We perform accurate, deep photometry of the field using J and Ks band AO images of the central region of the galaxy. The near-infrared (IR) colour-magnitude diagrams clearly show the sequences of asymptotic giant branch (AGB) stars, red supergiants, and red giant branch (RGB) stars down to ~1 mag below the RGB tip. Optical-near-IR diagrams, obtained by combining our data with Hubble Space Telescope observations, provide the best separation of stars in the various evolutionary stages. The counts of AGB stars brighter than the RGB tip allow us to estimate the star formation at intermediate ages. Assuming a Salpeter initial mass function, we find that the star formation episode at intermediate ages produced ~6x10^5 M_sun of stars in the observed region.Comment: 4 pages, 4 figures, Accepted for publication in A&A Letter
    corecore