49 research outputs found

    De la prensa a las apps. Un recorrido por la comunicaci贸n de los riesgos naturales en la prensa escrita y el papel de las nuevas tecnolog铆as

    Get PDF
    Es conocido el uso de la prensa como fuente de informaci贸n y del impacto social que los fen贸menos naturales provocan. Tambi茅n se considera 煤til la prensa como un indicador de la percepci贸n social. Con el fin de analizar estos aspectos, se ha construido una base de datos en ACCESS, PRESSGAMA, con m谩s de 16.500 noticias publicadas en la prensa escrita. PRESSGAMA contiene noticias relacionadas con desastres naturales y cambio clim谩tico para el periodo 1981-2010 a partir de una actualizaci贸n sistem谩tica para el diario La Vanguardia, uno de los m谩s importantes en Catalu帽a. Para cada una de las noticias se ha creado una ficha completa con informaci贸n como el titular, la fecha de publicaci贸n, la disposici贸n y extensi贸n, palabras clave e informaci贸n sobre el episodio. A partir de esta informaci贸n se ha analizado la evoluci贸n de las noticias y el tratamiento que se le ha dado a los riesgos naturales a lo largo de este periodo de tiempo. Adem谩s, se han identificado diferentes factores que influyen en la cobertura informativa y la percepci贸n de estos eventos. La aparici贸n de los medios digitales y las redes sociales ha supuesto grandes cambios en la comunicaci贸n del riesgo. Actualmente cuando se produce un desastre la cobertura informativa es muy elevada y pr谩cticamente instant谩nea. La ciudadan铆a ha pasado a tener un papel m谩s activo y protagonista, desde ser 煤nicamente receptores a difundir e incluso generar nuevas noticias. En el campo de la comunicaci贸n de los riesgos naturales esta cuesti贸n genera retos y oportunidades. Por esta raz贸n tambi茅n se ha analizado el papel de internet, las redes sociales y aplicaciones m贸viles en la comunicaci贸n del riesgo. Como ejemplo se presentar谩 el caso de la aplicaci贸n FLOODUP, una aplicaci贸n para compartir informaci贸n sobre inundaciones

    Flash-floods in Catalonia: the social perception in a context of changing vulnerability

    Get PDF
    In assessing a flood event two risk components need to be considered: the intrinsic hazard of the hydrome- teorological event causing the flood and the vulnerability of the area where the precipitation has been registered. In the present study four flood events selected by the FLASH Eu- ropean project have been classified according to the charac- teristics of the meteorological event (classification according to hazard) and according to the physical and economic dam- ages caused (classification according to vulnerability). The social impact of these events is analysed taking into account the growth of the population. An increase in the number of extraordinary flash-floods was detected in the areas with a major growth of the population, as a consequence of an in- creased vulnerability of these areas, both from a physical per- spective (exposure of infrastructures) and from an economic perspective (more goods exposed). In addition, the numer- ous non-native inhabitants of the region are not aware of the meteorological risks characteristic of the area, and this con- tributes to increased social vulnerabilit

    An analysis of the evolution of hydrometeorological extremes in newspapers: the case of Catalonia, 1982–2006

    Get PDF
    This contribution analyzes the evolution of perception of certain natural hazards over the past 25 years in a Mediterranean region. Articles from newspapers have been used as indicator. To this end a specific Spanish journal has been considered and an ACCESS database has been created with the summarized information from each news item. The database includes data such as the location of each specific article in the newspaper, its length, the number of pictures and figures, the headlines and a summary of the published information, including all the instrumental data. The study focused on hydrometeorological extremes, mainly floods and droughts, in the northeast of the Iberian Peninsula. The number of headlines per event, trends and other data have been analyzed and compared with "measured" information, in order to identify any bias that could lead to an erroneous perception of the phenomenon. The SPI index (a drought index based on standardized accumulated precipitation) has been calculated for the entire region, and has been used for the drought analysis, while a geodatabase implemented on a GIS built for all the floods recorded in Catalonia since 1900 (INUNGAMA) has been used to analyze flood evolution. Results from a questionnaire about the impact of natural hazards in two specific places have been also used to discuss the various perceptions between rural and urban settings. Results show a better correlation between the news about drought or water scarcity and SPI than between news on floods in Catalonia and the INUNGAMA database. A positive trend has been found for non-catastrophic floods, which is explained by decrease of the perception thresholds, the increase of population density in the most flood-prone areas and changes in land use

    Characteristics of 2D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS

    Get PDF
    Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators

    Characterization of a Mediterranean flash flood event using rain gauges, radar, gis and lightning data

    Get PDF
    Flash flood events are very common in Catalonia, generating a high impact on society, including losses in life almost every year. They are produced by the overflowing of ephemeral rivers in narrow and steep basins close to the sea. This kind of floods is associated with convective events producing high rainfall intensities. The aim of the present study is to analyse the 12-14 September 2006 flash flood event within the framework of the characteristics of flood events in the Internal Basins of Catalonia (IBC). To achieve this purpose all flood events occurred between 1996 and 2005 have been analysed. Rainfall and radar data have been introduced into a GIS, and a classification of the events has been done. A distinction of episodes has been made considering the spatial coverage of accumulated rainfall in 24 h, and the degree of the convective precipitation registered. The study case can be considered as a highly convective one, with rainfalls covering all the IBC on the 13th of September. In that day 215.9 mm/24 h were recorded with maximum intensities above 130 mm/h. A complete meteorological study of this event is also presented. In addition, as this is an episode with a high lightning activity it has been chosen to be studied into the framework of the FLASH project. In this way, a comparison between this information and raingauge data has been developed. All with the goal in mind of finding a relation between lightning density, radar echoes and amounts of precipitation. Furthermore, these studies improve our knowledge about thunderstorms system

    C-Band Dual-Doppler Retrievals in Complex Terrain: Improving the Knowledge of Severe Storm Dynamics in Catalonia

    Get PDF
    Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms' propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography

    Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB

    Get PDF
    Recent events in Western Attica in Greece (24 deaths in November 2017), in the Balearic Islands (13 deaths in October 2018), and in southern France (15 deaths in October 2018) show that flood-related mortality remains a major concern in Mediterranean countries facing flash floods. Over the past several years, many initiatives have arisen to create databases on flood-related mortality. An international initiative started in 2011 pooling regional and national databases on flood mortality from region and/or countries bordering the Mediterranean Sea. The MEditerranean Flood Fatality Database (MEFF DB) brings together, in 2018, six Mediterranean regions/countries: Catalonia (Spain), Balearic Islands (Spain), Southern France, Calabria (Italy), Greece, and Turkey, and covers the period 1980-2018. MEFF DB is on progress and, every year, new data are included, but for this study, we kept only the preliminary data that were geolocated and validated on 31st of December 2018. This research introduces a new step in the analysis of flood-related mortality and follows the statistical description of the MEFF DB already published. The goals of this paper are to draw the spatial distribution of flood mortality through a geographical information system (GIS) at different spatial scales: country, NUTS 3 (Nomenclature of Territorial Units for Statistics. Level 3) regions, catchment areas, and grid. A fatality rate (F: number of deaths/year/million of inhabitants) is created to help this analysis. Then, we try to relate mortality to basic (human or physical) drivers such as population density, rainfall seasonality, or rainfall frequency across the Mediterranean Basin. The mapping of F shows a negative mortality gradient between the western and the eastern parts of the Mediterranean Sea. The south of France appears to be the most affected region. The maps also highlight the seasonality of flood-related deaths with the same west-east gradient. It confirms that flood mortality follows the climatological seasonal patterns across the Mediterranean Basin. Flood-related fatalities mainly occur during the early fall season in the western part of the Mediterranean area, while the Easter Basin is affected later, in November or during the winter season. Eastern Turkey introduces another pattern, as mortality is more severe in summer. Mortality maps are then compared with factors that potentially contribute to the occurrence of flood fatalities, such as precipitation intensity (rainfall hazard), to explain geographical differences in the fatality rate. The density of a fatal event is correlated to the population density and the rainfall frequency. Conversely, the average number of deaths per event depends on other factors such as prevention or crisis managemen

    On the key role of droughts in the dynamics of summer fires in Mediterranean Europe

    Get PDF
    Summer fires frequently rage across Mediterranean Europe, often intensified by high temperatures and droughts. According to the state-of-the-art regional fire risk projections, in forthcoming decades climate effects are expected to become stronger and possibly overcome fire prevention efforts. However, significant uncertainties exist and the direct effect of climate change in regulating fuel moisture (e.g. warmer conditions increasing fuel dryness) could be counterbalanced by the indirect effects on fuel structure (e.g. warmer conditions limiting fuel amount), affecting the transition between climate-driven and fuel-limited fire regimes as temperatures increase. Here we analyse and model the impact of coincident drought and antecedent wet conditions (proxy for the climatic factor influencing total fuel and fine fuel structure) on the summer Burned Area (BA) across all eco-regions in Mediterranean Europe. This approach allows BA to be linked to the key drivers of fire in the region. We show a statistically significant relationship between fire and same-summer droughts in most regions, while antecedent climate conditions play a relatively minor role, except in few specific eco-regions. The presented models for individual eco-regions provide insights on the impacts of climate variability on BA, and appear to be promising for developing a seasonal forecast system supporting fire management strategies

    An interdisciplinary research agenda to explore the unintended consequences of structural flood protection

    Get PDF
    One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs, which substantially reduce the probability of flooding at the time of implementation. Numerous scholars have problematized this approach. They have shown that increasing the levels of flood protection can attract more settlements and high-value assets in the areas protected by the new measures. Other studies have explored how structural measures can generate a sense of complacency, which can act to reduce preparedness. These paradoxical risk changes have been described as levee effect, safe development paradox or safety dilemma. In this commentary, we briefly review this phenomenon by critically analysing the intended benefits and unintended effects of structural flood protection, and then we propose an interdisciplinary research agenda to uncover these paradoxical dynamics of ris

    Understanding Flood Regime Changes in Europe: a state-of-the-art assessment

    Get PDF
    There is growing concern that flooding is becoming more frequent and severe in Europe. A better understanding of flood regime changes and their drivers is therefore needed. The paper reviews the current knowledge on flood regime changes in European rivers that has traditionally been obtained through two alternative research approaches. The first approach is the data-based detection of changes in observed flood events. Current methods are reviewed together with their challenges and opportunities. For example, observation biases, the merging of different data sources and accounting for nonlinear drivers and responses. The second approach consists of modelled scenarios of future floods. Challenges and opportunities associated with flood change scenarios are discussed such as fully accounting for uncertainties in the modelling cascade and feedbacks. To make progress in flood change research, we suggest that a synthesis of these two approaches is needed. This can be achieved by focusing on long duration records and flood-rich and flood-poor periods rather than on short duration flood trends only, by formally attributing causes of observed flood changes, by validating scenarios against observed flood regime dynamics, and by developing low-dimensional models of flood changes and feedbacks. The paper finishes with a call for a joint European flood change research network
    corecore