34 research outputs found

    Controlling Quantum Rotation With Light

    Full text link
    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via time-domain focusing phenomenon, followed by the formation of angular rainbows and glory-like angular structures. Several scenarios leading to the enhanced angular squeezing are proposed that use specially designed and optimized sequences of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the squeezing of cold atoms in a pulsed optical lattice.Comment: 8 pages, Latex, 8 figures, based on the talk given at the Eighth Rochester Conference on Coherence and Quantum Optics (June 13-16, 2001). To appear in the proceedings of CQO8 (Plenum, 2002

    Quantum dynamics of a plane pendulum

    Get PDF
    A semi-analytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schrödinger equation is solved for pendular analogues of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time-evolution of the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed

    A case study using the model H+H2 and F+H2 reactions with aligned and anti- aligned H2

    Get PDF
    We propose a method to steer the outcome of reactive atom-diatom scattering, using rotational wavepackets excited by strong non-resonant laser pulses. Full close-coupled quantum mechanical scattering calculations of the D+H2 and F+H2 reactions are presented, where the H2 molecule exists as a coherent superposition of rotational states. The nuclear spin selective control over the molecular bond axis alignment afforded by the creation of rotational wavepackets is applied to reactive scattering systems, enabling a nuclear spin selective influence to be exerted over the reactive dynamics. The extension of the conventional eigenstate-to-eigenstate scattering problem to the case in which the initial state is composed of a coherent superposition of rotational states is detailed, and a selection of example calculations are discussed, along with their mechanistic implications. The feasibility of the corresponding experiments is considered, and a suitable simple two pulse laser scheme is shown to strongly differentiate the reactivities of o-H2 and p-H2

    Nuclear spin selective laser control of rotational and torsional dynamics

    Get PDF
    We explore the possibility of controlling rotational-torsional dynamics of non-rigid molecules with strong, non-resonant laser pulses and demonstrate that transient, laser-induced torsional alignment depends on the nuclear spin of the molecule. Consequently, nuclear spin isomers can be manipulated selectively by a sequence of time-delayed laser pulses. We show that two pulses with different polarization directions can induce either overall rotation or internal torsion, depending on the nuclear spin.Nuclear spin selective control of the angular momentum distribution may open new ways to separate and explore nuclear spin isomers of polyatomic molecules

    Semiclassical catastrophes and cumulative angular squeezing of a kicked quantum rotor

    No full text
    We present a detailed theory of spectacular semiclassical catastrophes happening during the time evolution of a kicked quantum rotor (Phys.Rev. Lett. {\bf 87}, 163601 (2001)). Both two- and three-dimensional rotational systems are analyzed. It is shown that the wave function of the rotor develops a {\em cusp} at a certain delay after a kick, which results in a sharply focused rotational wave packet. The {\em cusp} is followed by a fold-type catastrophe manifested in the {\em rainbow}-like moving angular singularities. In the three-dimensional case, the rainbows are accompanied by additional singular features similar to {\em glory} structures known in wave optics. These catastrophes in the time-dependent angular wave function are well described by the appropriate tools of the quasiclassical wave mechanics, i.e. by Airy and Bessel approximations and Pearcey's functions. A scenario of "accumulative squeezing" is also presented in which a specially designed train of short kicks produces an unlimited narrowing of the rotor angular distribution. This scenario is relevant for the molecular alignment by short laser pulses, and also for atom lithography schemes in which cold atoms are focused by an optical standing wave

    Atom-diatom scattering dynamics of spinning molecules

    Get PDF
    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H2 and F+H2 collisions. Molecules can be forced to rotate uni- directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules

    Molecular Symmetry Properties of Conical Intersections and Nonadiabatic Coupling Terms: Theory and Quantum Chemical Demonstration for Cyclopenta-2,4-dienimine (C5H4NH)

    Get PDF
    This paper discovers molecular symmetry (MS) properties of conical intersections (CIs) and the related nonadiabatic coupling terms (NACTs) in molecules which allow large amplitude motions such as torsion, in the frame of the relevant molecular symmetry group, focusing on groups with one-dimensional (1-d) irreducible representations (IREPs). If one employs corresponding MS-adapted nuclear coordinates, the NACTs can be classified according to those IREPs. The assignment is supported by theorems which relate the IREPs of different NACTs to each other, and by properties of the NACTs related to the CIs. For example, planar contour integrals of the NACTs evaluated along loops around the individual CIs are equal to +π or -π, depending on the IREP-adapted signs of the NACTs. The + or - signs for the contour integrals may also be used to define the “charges” and IREPs of the CIs. We derive various general molecular symmetry properties of the related NACTs and CIs. These provide useful applications; e.g., the discovery of an individual CI allows one to generate, by means of all molecular symmetry operations, the complete set of CIs at different symmetry-related locations. Also, we show that the seams of CIs with different IREPs may have different topologies in a specific plane of MS-adapted coordinates. Moreover, the IREPs impose symmetrical nodes of the NACTs, and this may support their calculations by quantum chemical ab initio methods, even far away from the CIs. The general approach is demonstrated by application to an example. Specifically, we investigate the CIs and NACTs of cyclopenta-2,4-dienimine (C5H4NH) which has C2V(M) molecular symmetry with 1-d IREPs. The results are confirmed by quantum chemical calculations, starting from the location of a CI based on the Longuet-Higgins phase change theorem, until a proof of self-consistency, i.e., the related symmetryadapted NACTs fulfill quantization rules which have been derived in [Baer, M. Beyond Born-Oppenheimer: Electronic non-Adiabatic Coupling Terms and Conical Intersections; Wiley & Sons Inc.: Hoboken, NJ, 2006].We thank Prof. Lluis Blancafort, Prof. Dietrich Haase, Prof. Yehuda Haas, PD Dr. Dirk Andrae, Mr. Thomas Grohmann, and Ms. Shireen Alfalah for advice and stimulating discussions, and Mr. Dominik Sattler for preparing Figures 1 and 2. This study was supported by the Deutsche Forschungsgemeinschaft in the framework of Project No. MA 515/22-2, and by Fonds der Chemischen Industrie

    Squeezing of Atoms in a Pulsed Optical Lattice

    Full text link
    We study the process of squeezing of an ensemble of cold atoms in a pulsed optical lattice. The problem is treated both classically and quantum-mechanically under various thermal conditions. We show that a dramatic compression of the atomic density near the minima of the optical potential can be achieved with a proper pulsing of the lattice. Several strategies leading to the enhanced atomic squeezing are suggested, compared and optimized.Comment: Latex, 9 pages, 10 figures, submitted to PR

    Non-equilibrium dynamics of an unstable quantum pendulum

    Full text link
    A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibria and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Unstable fixed points are central to understanding Hamiltonian chaos in classical systems. In many-body quantum systems, mean-field approximations fail in the vicinity of unstable fixed points and lead to dynamics driven by quantum fluctuations. Here, we measure the non-equilibrium dynamics of a many-body quantum pendulum initialized to a hyperbolic fixed point of the phase space. The experiment uses a spin-1 Bose condensate, which exhibits Josephson dynamics in the spin populations that correspond in the mean-field limit to motion of a non-rigid mechanical pendulum. The condensate is initialized to a minimum uncertainty spin state, and quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25 s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes compared to no loss case as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in more apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.Comment: Main text 6 pages, 5 figures; Supplement 4 pages, 1 figur
    corecore