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Molecular Symmetry Properties of Conical Intersections and Nonadiabatic Coupling Terms:
Theory and Quantum Chemical Demonstration for Cyclopenta-2,4-dienimine (C5H4NH)†
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Institut für Chemie und Biochemie, Freie UniVersität Berlin, Germany, Faculty of Pharmacy, Al-Quds
UniVersity, Palestine, The Fritz Haber Center for Molecular Dynamics, The Hebrew UniVersity of Jerusalem,
Israel, and Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew
UniVersity of Jerusalem, Israel

ReceiVed: May 29, 2009; ReVised Manuscript ReceiVed: August 6, 2009

This paper discovers molecular symmetry (MS) properties of conical intersections (CIs) and the related
nonadiabatic coupling terms (NACTs) in molecules which allow large amplitude motions such as torsion, in
the frame of the relevant molecular symmetry group, focusing on groups with one-dimensional (1-d) irreducible
representations (IREPs). If one employs corresponding MS-adapted nuclear coordinates, the NACTs can be
classified according to those IREPs. The assignment is supported by theorems which relate the IREPs of
different NACTs to each other, and by properties of the NACTs related to the CIs. For example, planar
contour integrals of the NACTs evaluated along loops around the individual CIs are equal to +π or -π,
depending on the IREP-adapted signs of the NACTs. The + or - signs for the contour integrals may also be
used to define the “charges” and IREPs of the CIs. We derive various general molecular symmetry properties
of the related NACTs and CIs. These provide useful applications; e.g., the discovery of an individual CI
allows one to generate, by means of all molecular symmetry operations, the complete set of CIs at different
symmetry-related locations. Also, we show that the seams of CIs with different IREPs may have different
topologies in a specific plane of MS-adapted coordinates. Moreover, the IREPs impose symmetrical nodes of
the NACTs, and this may support their calculations by quantum chemical ab initio methods, even far away
from the CIs. The general approach is demonstrated by application to an example. Specifically, we investigate
the CIs and NACTs of cyclopenta-2,4-dienimine (C5H4NH) which has C2V(M) molecular symmetry with 1-d
IREPs. The results are confirmed by quantum chemical calculations, starting from the location of a CI based
on the Longuet-Higgins phase change theorem, until a proof of self-consistency, i.e., the related symmetry-
adapted NACTs fulfill quantization rules which have been derived in [Baer, M. Beyond Born-Oppenheimer:
Electronic non-Adiabatic Coupling Terms and Conical Intersections; Wiley & Sons Inc.: Hoboken, NJ, 2006].

I. Introduction

The purpose of this paper is to discover molecular symmetry
(MS) properties of conical intersections (CIs) and the related
nonadiabatic coupling terms (NACTs) in molecules which allow
large amplitude motions such as torsion, in the frame of the
relevant molecular symmetry group, focusing on groups with
one-dimensional (1-d) irreducible representations (IREPs). This
goal is not only of fundamental interest, but it is also important
for applications; e.g., we shall show that the discovery of an
individual CI and the assignment of its IREP generate automati-
cally the complete set of analogous CIs at symmetry-related
locations. Moreover, the CIs and NACTs, which appear in the
Born-Oppenheimer expansion of the Schrödinger equation,1

determine the nonadiabatic processes, e.g., for the photochem-
istry of the given system;2,3 see also ref 4; knowledge of the
symmetry properties should thus be important for adequate
predictions of the nonadiabatic reaction dynamics, including
interferences. Here, we do not mean necessarily the Aharonov-

Bohm effect as frequently discussed in the literature5-7 but more
general molecular-symmetry-related effects of interferences. In
particular, we shall show that the seams of CIs with different
IREPs may have different topologies in a specific plane of MS-
adapted coordinates, implying different nonadiabatic processes.
Last but not least, the molecular symmetries impose symmetric
nodes on the NACTs, depending on their IREPs; we shall also
show that this may assist quantum chemical calculations of the
NACTs, specifically in domains far away from conical intersec-
tions where the absolute values of the NACTs may drop possibly
below the level of accuracy of the applied method of quantum
chemistry. In such cases, the symmetry properties of the NACTs
determine their relative signs in analogous symmetry-related
locations, even far away from each other. Traditional quantum
chemistry cannot provide that information per se, because it is
designed as a method for determining the electronic structures
in local domains of nuclear coordinates, e.g., close to equilibrium
structures of reactants or products, or transition states, with
corresponding assignments of IREPs for the molecular point
group of the system; this is quite different from the molecular
symmetry group which nomen est omen accounts for the global
molecular symmetry properties, in all accessible geometries. Our
approach invokes a number of steps which are listed below as
a work plan:
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* Corresponding author. E-mail: monika@chemie.fu-berlin.de.
‡ Freie Universität Berlin.
§ Al-Quds University.
| The Fritz Haber Center for Molecular Dynamics, The Hebrew

University of Jerusalem.
⊥ Department of Physical Chemistry and the Farkas Center for Light

Induced Processes, The Hebrew University of Jerusalem.

J. Phys. Chem. A 2010, 114, 2991–3010 2991

10.1021/jp905038t  2010 American Chemical Society
Published on Web 11/06/2009



(i) the assignment of the molecular symmetry (MS) of the
given system which may undergo large amplitude motion, e.g.,
torsion, cf. ref 8, and considerations of the consequences, e.g.,
applications of the molecular symmetry operations in order to
construct sets of analogous symmetry-related geometries, and
a discussion of the difficulties to assign molecular IREPs to
electronic states,

(ii) the definition of corresponding symmetry-adapted nuclear
coordinates and their derivatives which should transform as the
IREPs of the MS group, for small as well as large amplitude
motions,

(iii) the expression of the CIs and the corresponding seams2

of the CIs in terms of these coordinates,
(iv) the definition of the related NACTs using the symmetry-

adapted coordinates,
(v) the derivation of two theorems which relate the IREPs of

different NACTs to each other,
(vi) the determination of symmetric nodes of the NACTs,

together with the (relative) signs of the NACTS in different
symmetry-related domains, even far away from the CIs,

(vii) the assignment of IREPs to the NACTs, by means of
the two general theorems as well as by three well-known
properties of the NACTs related to the CIs. Specifically, we
shall employ the so-called quantization rule for the NACTs,1

the pole property of the NACTs close to the CIs,1,2 and the fact
that the electronic wave functions for the two states which
become degenerate at a CI may change characters close to the
CIs, with consequences for the NACTs. Further details will be
specified below; see eqs 22-27 in section II. Here, it is sufficient
to say that these properties have been documented previously,
mainly for small molecules, i.e., tri- and tetra-atomic molecules,
without considerations of large amplitude motions which call
for molecular symmetry groups.1,2,9-27 An approach based on
an ab initio treatment1,28,29 was recently extended to a larger
system, CH3NH2.30

(viii) the definition of corresponding signs or “charges” of
the symmetry-related CIs,

(ix) the assignment of the corresponding IREPs of the CIs,
(x) the derivation of different topologies of the seams of the

CIs depending on their molecular symmetries in a specific plane
of MS-adapted coordinates.

While this work plan (i-x) should be applicable to arbitrary
molecules which undergo small as well as large amplitude
motions which transform according to 1-d IREPs of the MS
group, they will be explained and demonstrated for a specific
example, i.e., cyclopenta-2,4-dienimine (C5H4NH). For example,
in step i, we shall determine its molecular symmetry group, etc.
This allows us to illustrate a number of additional consequences
of the MS for the NACTs and CIs including

(xi) the support of quantum chemistry calculations of the
NACTs in domains far away from the CIs and, last but not
least,

(xii) tests of self-consistency; e.g., the symmetry-adapted
NACTs satisfy quantization rules which have been derived
previously by one of us.1

The chosen model system C5H4NH is challenging because it
is a rather large (compared to the above-mentioned models)
exocyclic analogue of methylene-imine (CH2NH), the parent
molecule with a CdN double bond, which provides two
different reaction pathways from the planar syn configuration
of the reactant along large amplitude motions via three different
transition states to the planar anti configurations of the product,31

pointing to possibly rich and instructive scenarios of various
conical intersections. For the purpose of a proof of principle,

the present investigation of the symmetry properties of C5H4NH
will be restricted to just three electronic states: first, the
electronic ground state S0 which has a potential minimum for
the planar syn configuration. At this special configuration,
traditional quantum chemistry assigns the notation S0 ) 1A′,
according to the “local” IREP A′ of the corresponding molecular
point group Cs (NOT to be mixed up with global molecular
symmetry.) Moreover, we include the next two excited singlet
states which have (local) A′ symmetry, S1 ) 2A′ and S2 ) 3A′.
Since we aim at describing large amplitude motions, i.e., torsion,
we shall not employ the notation for the “local” symmetry.
Instead, we shall use the “global” notation Sj, with j ) 0, 1,
and 2 which indicates the energetic order of the adiabatic
potentials Vj.

The double goal of the general derivations and the verifica-
tions by means of quantum chemistry calculations for the model
system C5H4NH should provide significant extensions of the
theory for the NACTs and CIs, beyond the quoted previous
investigations. The work plan (i-x) will be carried out in section
II. The results will be confirmed by quantum chemical calcula-
tions, starting from the location of a conical intersection of state
S0 and S1 based on the Longuet-Higgins phase change theorem;32,33

see also refs 34-36 until items xi and xii; see section III. The
conclusions are in section IV.

II. Theory with an Example

A. Assignment of the Molecular Symmetry Group. Ac-
cording to the work-plan of section I, our derivation starts with

(i) the assignment of the molecular symmetry group of the
given system, allowing large amplitude motion, e.g., torsion,
cf. ref 8, focusing on groups with 1-d IREPs. The group MS
consists, in general, of G symmetry operations Ŝg, with g ) 1,
2, ... , G, including the identity Ŝ1 ) E, all feasible permutations
P of the spatial and spin coordinates of equivalent nuclei, and
possibly the inversion E* of all nuclear coordinates s and
electronic coordinates se, and the inversion-permutations PoE*;
specific choices of symmetry-adapted coordinates will be made
below; see item ii. Application of the symmetry operations to
a specific set of values (written with square brackets), say, s, se

) [s, se]1, generates a set of other values of the coordinates

These will be called “symmetry-related” (sets of values of)
coordinates. They may be far away from each other. Neverthe-
less, the large amplitude motions may provide feasible paths
from nuclear coordinates [s]1 to the symmetry-related ones [s]g.

Accordingly, the molecular symmetry group possesses G
IREPs denoted as Γg, with g ) 1, ... , G, say, Γ1 ) A1, Γ2 ) A2,
Γ3 ) B1, etc., with associated characters �g,h and symmetry
projection operators P̂Γg. For 1-d IREPs,

These P̂Γg commute with each other, and with the total
Hamiltonian H ) Tnu + Hel of the system, where Tnu is the
nuclear kinetic energy operator and Hel is the electronic
Hamiltonian. Moreover, they commute also with Hel. As a
consequence, the (real-valued) electronic eigenfunctions
ψj(se; s) of Hel

[s, se]g ) Ŝg[s, se]1 with g ) 1, 2, ... , G (1)

P̂Γg ) 1
G ∑

h

�g,hŜh (2)
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and the electronic energies, i.e., the adiabatic potential energy
surfaces (PESs) Vj(s) are also labeled by the IREPs Γg, at least
in principle. In fact, the IREPs may be assigned even if the
ψj(se; s) accumulates a so-called topological (Berry) phase when
it is transported along a closed contour around a CI,37 thus
changing its sign.33 In practice, it may be exceedingly difficult,
however, to determine the IREPs of the ψj(se; s), because this
would require calculation of the relative (same or opposite) signs
of the ψj at all of the symmetry-related coordinates [s, se]g. Due
to the invariance of Hel with respect to Ŝg, quantum chemistry
packages would indeed yield the same absolute values of the
wave functions

but the relative signs of ψj([s, se]g) are not provided automati-
cally. This deficit is due to the fact that different domains close
to the symmetry-related [s, se]g with large values of |ψj([s, se]g)|
may be separated by rather large domains where the absolute
values of the |ψj([s, se]g)| may drop even below the level of
accuracy of the quantum chemical method. This may be due to
two reasons, with opposite consequences for the relative signs
of the ψj([s, se]g): either symmetric nodes which imply a change
of sign or just tunneling, without any change of sign. Quantum
chemistry may fail to discriminate these cases; i.e., in practice,
it may be impossible to assign the relative signs of ψj([s, se]g),
but then it is also impossible to assign their IREPs!

As a resume, one should appreciate the advantage but also
recognize the deficit of (ab initio) quantum chemistry methods
concerning the assignments of IREPs to electronic wave
functions: this is now routine for molecular point groups, but it
may be inefficient concerning the molecular symmetry group.
This shortcoming provides the particular motivation or challenge

that we address in this paper, i.e., to develop the approach which
allows one to assign IREPs to the NACTs and CIs, even if the
IREPs of the ψ’s are not known. Indeed, the subsequent
derivations of the symmetry properties of the NACTs do not
even require that one evaluates those ψj(se; s) and Vj(s) explicitly.
In practice, we restrict the investigation to a finite number of
electronic states, typically the electronic ground and few excited
states, with the same spin multiplicity (neglecting effects of
spin-orbit couplings), say, S0, S1, ... , Sj, ... , Sjmax

.
By analogy with relation 4, if one discovers a conical

intersection, say, for the nuclear coordinates s ) [s]1, then one
can apply all the symmetry operations Ŝg of the molecular
symmetry group to [s]1 in order to generate a complete set of
CIs which are located at the corresponding set of symmetry-
related values of the coordinates [s]g ) Ŝg[s]1. Subsequently
(see step iii), this procedure will be applied using symmetry-
adapted coordinates (see step ii). Likewise, if any property of
the NACTs is determined at another value of the nuclear
coordinates, say, [s]1′ , then analogous properties of the NACTs
are predicted at all symmetry-related coordinates [s]g′ ) Ŝg[s]1′ .

As an example, Figure 1a shows the molecule cyclopenta-
2,4-dienimine (C5H4NH), which allows large amplitude motion,
i.e., torsion of the hydrogen atom of the NH bond around the
axis which is defined by the CN bond. Figure 1a also illustrates
the effects of the four molecular symmetry operations, i.e., the
identity E, the inversion E*, the simultaneous permutation (12)
of the coordinates of the four nuclei of one of the fragments
HsCdCsH (labeled “1”) of the cyclopenta-2,4-dienyl ring with
the opposite one (labeled “2”), and the inversion permutation
(12)* ) (12)oE*. The model C5H4NH does not allow any other
feasible permutations of the nuclei. Hence, the four (G ) 4)
symmetry operations Ŝ1 ) E, Ŝ2 ) (12), Ŝ3 ) E*, and Ŝ4 )
(12)* constitute the molecular symmetry group C2V(M). The
notation “(M)” stands for the molecular symmetry. The MS
group C2V(M) is isomorphic to the molecular point group C2V,
with corresponding IREPs A1, A2, B1, and B2. The character table

Figure 1. Effects of the four symmetry operations E, (12), E*, and (12)* of the molecular symmetry group C2V(M) on the model system, cyclopenta-
2,4-dienimine (C5H4NH), with arbitrary configurations (panel a, courtesy of Prof. D. Haase), and with constraints to planar fragment C5H4N with
C2V molecular point group symmetry (panel b, see text). The ring-type trajectory in panel b illustrates the torsion of the NH bond along the torsional
angle � and with constant radius r. The effects of the symmetry operations on � are also illustrated in panel b (cf. Table 1), while r remains
unaffected. The example is for the case 0 e � e π/2, such that all of the symmetry-adapted angles are in the domain [-π, π]. Also shown are the
orientations of the x- and y-axes for the related coordinates x ) r cos � and y ) r sin �.

Helψj(se; s) ) Vj(s)ψj(se; s) (3)

|ψj([s, se]1)| ) |ψj([s, se]2)| ) ... ) |ψj([s, se]G)| (4)
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of C2V(M) is shown in Table 1. The subsequent investigation
will be restricted just to the three lowest singlet states Sj, j ) 0,
1, 2, of the model C5H4NH.

B. Molecular-Symmetry-Adapted Coordinates. (ii) Next,
we define corresponding sets of molecular-symmetry-adapted
nuclear coordinates (denoted by curly brackets) s ) {sk},
together with the ∂/∂sk derivatives. These should transform as
the IREPs of the MS group, and they should allow one to
describe the characteristic large amplitude motions of the
molecular, as well as vibrations with small amplitudes. In
principle, accurate presentations of all coupled vibrations and
rotations of a nonlinear moleculer with Nnu nuclei would call
for 3Nnu - 3 coordinates sk, subtracting three coordinates for
the motion of the molecular center of mass. Subsequently, we
assume that the molecule is in the rotational ground state such
that the wave function does not depend on the rotational Euler
angles. All of the subsequent results are valid, therefore, for
arbitrary reorientations of the molecule; this assumption has been
used implicitly for the molecular rotation which is illustrated
in Figure 1. For simplicity, one may also employ models of
reduced dimensionality, with explicit considerations of a smaller
number of molecular-symmetry-adapted coordinates sk, k ) 1,
2, ... , n (including those which account for the large amplitude
motions) while freezing the other ones. The derivation of the
molecular Hamiltonian in reduced dimensionality has been
explained in refs 4 and 29. These types of n-dimensional (n-d)
models imply constraints on the molecular geometries; e.g., they
may describe configurations which are close to but not
automatically exactly equal to the equilibrium structures of the
reactants and products, transition states, conical intersections,
or any other structures of reference, and corresponding large
amplitude motions between these configurations. It depends on
the purpose of the specific investigation whether the model of
reduced dimensionality suffices to provide, say, satisfactory
semiquantitative results, or whether one prefers to include

additional degrees of freedom for higher accuracy, at the expense
of higher computational demands.

For the present purpose which aims at a demonstration of
the principles of molecular symmetry properties of the CIs and
NACTs, we employ just two symmetry-adapted coordinates, s
) {s1, s2} of the model system C5H4NH, while freezing the
other 3 × 11 - 3 - 2 ) 28 ones. Specifically, the fragment
C5H4N including the CN bond and the cyclopentadienyl ring is
frozen in a planar configuration corresponding to local C2V

molecular point group symmetry for this molecular fragment,
as shown in Figure 1b. The specific geometry of the frozen
C5H4N fragment is irrelevant for the general derivations; a
special choice will be made below in section III for the
subsequent illustrations. The chosen symmetry-adapted coor-
dinates are s1 ) r (0 e r e ∞) and s2 ) � (-π e � e π),
where the dihedral angle � (or more precisely the associated
torsional rotation operator R̂� ) ∂/∂�) describes isomerization
by torsion of the NH bond around the axis which is defined by
the CN bond of the frozen fragment C5H4NH, and r is the
distance of the proton of the NH bond from this axis of torsion.
Note that these restrictions of frozen coordinates imply that the
configurations of the potential minima of the reactant and
product are not included exactly in the domains of the polar
coordinates � and r, but we shall show that, nevertheless, the
energies of the reactants, products, and the relevant conical
intersections are approximated rather well, cf. section III. For
convenience of the present study which aims at investigations
of the global symmetries, we define � in the domain from -π
to +π such that � ) 0 corresponds to the planar syn
configuration of the reactant, whereas � ) -π or +π corre-
sponds to the anti configuration of the product. In C2V(M)
symmetry, these coordinates r and � (or more precisely the
related torsion R̂�), as well as their derivatives ∂/∂r and ∂/∂�,
transform as A1 and A2, respectively; see Table 1 and Figure

TABLE 1: Character Table of the Molecular Symmetry Group C2W(M) of C5H4NH, with Extensions, see Figure 1a-f

a Isomorphic to the molecular point group C2V. b For ψs, NACTs or CIs at Ŝg(x,y); see footnote e; the + and - signs or charges denote same
and opposite relative signs, respectively; horizontal and vertical double lines indicate nodes at the x and y axis, respectively. c Four possible
combinations of IREPs of the NACTs. The short-hand notation τk denotes the NACT τk

ij for unspecified electronic states i and j, with respect to
the derivative for the nuclear coordinates sk ) r, �, x, or y. Applications of the second and third possible combinations for the NACTs of
C5H4NH are specified below. d Effects of the symmetry operations Ŝg yielding symmetry-related molecular structures with the same radius r but
different torsional angles, cf. Figure 1b and eq 1. e Effects of the symmetry operations Ŝg yielding symmetry-related molecular structures with
different Cartesian coordinates, cf. eq 5. f Symmetry-related top right, bottom left, bottom right, and top left locations correspond to Ŝg(x,y) with
g ) 1, 2, 3, and 4, respectively.
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1b. Alternatively, one may also employ the related symmetry-
adapted Cartesian coordinates

These and their derivatives ∂/∂x and ∂/∂y transform as B2 and
B1, respectively, cf. Table 1. Rigorously, the Cartesian coordi-
nates are attached to the heavy C5H4N fragment. The relation 5
yields the values of these coordinates depending on the values
of the coordinates {r, �} which describe the motion of the light
proton of the NH bond relative to C5H4N.

The effects of the symmetry operations E, (12), E*, and (12)*
on C5H4N in constrained configuration space of the two
symmetry-adapted coordinates � and r are illustrated in Figure
1b. As an example, we assume that the original or “first”
configuration is specified by [s]1 ) [{r,�}]1, where 0 e � e
π/2. One readily sees that this transforms into symmetry-related
structures with torsional angles �, -π + �, -�, and π - �, in
the domains [0, π/2], [-π, -π/2], [-π/2, 0], [π/2, π],
respectively, covering the entire torsional domain from -π to
π, while keeping the radius r constant; these effects are also
summarized in Table 1. For this reason, we shall investigate
the symmetry properties of the NACTs and the related CIs
versus arbitrary values of �, while keeping the radius r as a
free but constant parameter. For the present example, eq 1 reads

See Table 1, and eq 4 is specified as

C. Generation of Molecular-Symmetry-Related Conical
Intersections. (iii) Third, the CIs and the corresponding seams
of the CIs are determined using symmetry-adapted nuclear
coordinates. For this purpose, eq 3 is applied using s ) {sk},
cf. item ii. For specific values s ) si,i+1 ){sk

i,i+1}, neighboring
pairs of the resulting adiabatic potentials are degenerate

Equation 8 defines the associated seam si,i+1 ) {sk
i,i+1} of the

conical intersection, which is written with the corresponding
notation CIi,i+1(si,i+1).

Relation 1 and the molecular symmetry of the electronic
Hamiltonian imply that if a conical intersection has been
discovered at special values, say, si,i+1 ) [si,i+1]1 ) [{sk

i,i+1}]1,
then one can apply all of the symmetry operations Ŝg to CI1

i,i+1

) CIi,i+1([si,i+1]1), and this will generate a complete set of
molecular-symmetry-related CIg

i,i+1 ) CIi,i+1([si,i+1]g) located at
the

Below (see steps viii and ix), we shall define signs or “charges”
eg

i,i+1 to the set of CIg
i,i+1, and determine the corresponding IREP

of CIi,i+1.
Accordingly, for the present example which focuses on

three electronic states S0, S1, and S2 of C5H4NH, we shall
determine the conical intersections at special values of the
symmetry-adapted nuclear coordinates. According to the
general notation, these are denoted as CI0,1({r0,1, �0,1}) and
CI1,2({r1,2, �1,2}), and the specific values of the coordinates
of the “first” representatives CI1

0,1 and CI1
1,2 are {r0,1, �0,1} )

[{r0,1, �0,1}]1 and {r1,2, �1,2} ) [{r1,2, �1,2}]1, respectively.
Applications of the four molecular symmetry operations Ŝg

then automatically generate complete sets of analogous
symmetry-related conical intersections, denoted CIg

0,1 )
CI0,1([{r0,1, �0,1}]g) and CIg

1,2 ) CI1,2([{r1,2, �1,2}]g) at
symmetry-related values of coordinates [{r0,1, �0,1}]g )
Ŝg[{r0,1, �0,1}]1 and [{r1,2, �1,2}]g ) Ŝg[{r1,2, �1,2}]1, respectively.

D. Nonadiabatic Coupling Terms (NACTs) in Terms of
Molecular-Symmetry-Adapted Coordinates. (iv) Fourth, us-
ing the symmetry-adapted nuclear coordinates s ) {sk}, we
define the NACTs of the (real-valued) electronic wave function
ψi(se, s) and the ∂/∂sk derivative of ψj(se, s), integrated over the
electronic coordinates se

1

with 1 e i < j e jmax. The definition eq 10 applies to all
configurations except s ) [si,i+1]g, i.e., away from, albeit
possibly close to, the CIi,i+1([si,i+1]g) where the NACTs have
poles.1 The τk

i,j(s) may be considered as components k ) 1,
2, ... , n of the vectorial NACTs, τi,j(s) for the n-d model.
For reference, we note that, in principle, the IREP of the
NACT eq 10 is given by

with 1 e i < j e jmax. In eq 11, we use the notation Γ(...) for
IREPs of various properties, e.g., for the NACTs, the ψ’s,
the derivatives ∂/∂sk, etc.; analogous notations will also be
applied for IREPs of other properties (...), e.g., products of
NACTs or CIs. In eq 11, we have used the product theorem,
focusing on 1-d irreducible representations. The third equa-
tion follows from the antisymmetry relation 10; i.e., it suffices
to determine the IREPs of the τk

i,j for i < j. The task of
determining the IREPs of the NACTs would thus be finished
if the IREPs of the wave functions ψ were known for the
given MS group. Since it is difficult, if not even impossible,
to provide this information by means of quantum chemistry
(vide infra), we shall develop an alternative approach to
Γ(τk

i,j). To begin, we note that identical absolute values of
the wave functions at symmetry-related nuclear coordinates,
eq 4, imply that the NACTs of (10) also have the same
absolute values at symmetry-related coordinates

x ) r cos �

y ) r sin � (5)

[{r, �}, se]1 ) E[{r, �}, se]1 ) [{r, �}, se]

[{r, �}, se]2 ) (12)[{r, �}, se]1 ) [{r,-π + �}, se]

[{r, �}, se]3 ) E*[{r, �}, se]1 ) [{r,-�},-se]

[{r, �}, se]4 ) (12)*[{r, �}, se]1 ) [{r, π - �},-se] (6)

|ψj([r, �, se])| ) |ψj([r,-π + �, se])| )
|ψj([r,-�,-se])| ) |ψj([r, π - �,-se])| (7)

Vi(s
i,i+1) ) Vi+1(s

i,i+1) (8)

[si,i+1]g ) Ŝg[s
i,i+1]1 with g ) 1, 2, ... , G (9)

τk
i,j(s) ) 〈ψi(s)|

∂

∂sk
ψj(s)〉 ) ∫ dseψi(se, s)

∂

∂sk
ψj(se, s) )

-τk
j,i(s) (10)

Γ(τk
i,j) ) Γ(ψi(se; s)

∂

∂sk
ψj(se; s)) )

Γ(ψi(se; s)) × Γ( ∂

∂sk
) × Γ(ψj(se;s)) ) Γ(τk

j,i) (11)

|τk
i,j([s]1)| ) |τk

i,j([s]2)| ) ... ) |τk
i,j([s]G)| (12)
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for 1 e i < j e jmax. Determination of the IREPs of the τk
i,j(s)

will also provide their relative signs at the symmetry-related
nuclear coordinates (1).

Accordingly, for the present example C5H4NH, we shall
investigate the molecular symmetry properties of the radial and
torsional NACTs τr

0,1, τr
0,2, and τr

1,2 and τ�
0,1, τ�

0,2, and τ�
1,2,

respectively. The properties of the complementary NACTs τr
1,0,

etc., follow from the antisymmetry relation 10. It will also be
useful to determine the IREPs with respect to the alternative
derivatives ∂/∂x and ∂/∂y; see eq 5. Relation 12 is specified as

for i, j ) 0, 1 or 0, 2 or 1, 2 and {sk} ) {r,�} or {x,y}, together
with the antisymmetry relation 10.

E. Molecular-Symmetry-Based Theorems for the NACTs.
(v) Fifth, based on steps i-iv, we are now ready to derive two
symmetry theorems which relate the IREPs of different NACTs
to each other. Specifically, the first relation is for NACTs τk

i,j

and τl
i,j with the same set of electronic states i, j but with

derivatives with respect to different symmetry-adapted coordi-
nates sk and sl, respectively. Relation 11 then implies that

or

Theorem 15 yields the irreducible representations of all of the
NACTs from the irreducible representations of a single NACT,
for the same electronic states i and j, simply by multiplication
with the product of the IREPs of the derivatives of the
corresponding two different symmetry-adapted coordinates.

Application to the present example C5H4NH with molecular
symmetry group C2V(M) allows one to set up four possible
combinations of IREPs of the NACTs with respect to the
derivatives of the coordinates r, �, x, and y; these are listed in
Table 1. For example, if Γ(τr

i,j) ) A1, then theorem 15 implies
that Γ(τ�

i,j) ) A2, Γ(τx
i,j) ) B2, and Γ(τy

i,j) ) B1. Note, however,
that theorem 15 does not suffice per se to decide which of the
four possible combinations apply to a given set of electronic
states i and j. Table 1 already anticipates that τk

1,2 transforms
according to the second combination, whereas τk

0,1 and τk
0,2

transform according to the third one, but these assignments
require additional steps; see below.

The second symmetry theorem relates the IREPs of NACTs
for the derivatives with respect to the same symmetry-adapted
coordinate ∂/∂sk but for different electronic states to each other.
For this purpose, let us consider a loop-type sequence of Nloop

molecular states with the same spin multiplicity, e.g., singlet
states Sa, Sb, Sc, ... , Sy, Sz ) Sa, i.e., starting and ending with
the same state Sa ) Sz. The corresponding NACTs are τk

a,b,
τk

b,c, ... , τk
y,z ) τk

y,a. Let us now consider the product

The IREP of τ̃k
a,b,c,...,y,z)a can then be determined from the product

theorem for the IREPs of the underlying electronic wave
functions ψi(se; s) and ψj(se; s) as well as the derivatives of the
symmetry-adapted coordinates ∂/∂sk. Using eq 11 and focusing
on 1-d IREPs, we obtain

Theorem 17 imposes a condition on the IREPs of the NACTs
τk

i,j which contribute to the loop (16). Analogous conditions can
be derived for similar loops for NACTs τk

a,bτl
b,c ... with respect

to different symmetry-adapted coordinates sk, sl, etc., but these
do not provide any additional information because they can be
re-expressed in terms of theorems 15 and 17.

In order to demonstrate the power of theorem 17, let us
consider the example of C5H4NH and the loop of Nloop ) 3
electronic states S0, S1, S2, S0, thus

For sk ) �, theorem 17 yields the relation of the IREPs of the
NACTs with respect to the ∂/∂� derivatives

Likewise, for the NACTs with respect to the ∂/∂r derivatives,
theorem 17 yields

The relations 19 and 20 for the NACTs with respect to the
derivatives ∂/∂� and ∂/∂r, respectively, imply symmetry con-
straints on their IREPs. For example, if the IREPs are known
for two of the NACTs with respect to ∂/∂�, say, Γ(τ�

0,1) and
Γ(τ�

0,2), then the IREP of the third one, i.e., Γ(τ�
1,2), follows

automatically from relation 19. An example is anticipated in
Table 1, i.e., Γ(τ�

0,1) ) Γ(τ�
0,2) ) B1 implies Γ(τ�

1,2) ) A2. Note
that, on one hand, theorem 17 establishes a useful relation (or
more, if additional loops of electronic states are available)
between the NACTs of the loop of electronic states (16). On
the other hand, it does not suffice per se to discover the IREPs
of all of the NACTs; additional steps are necessary, for that
purpose; see item vi. In any case, the two theorems 15 and 17
are applicable without ever calculating the electronic wave
functions or the NACTs explicitly.

F. Signs of NACTs at Symmetry-Related Positions. (vi)
Next, we note that theorem 15 allows one to determine relations
between different patterns of relative signs of the NACTs at
the sets of symmetry-related values of coordinates, as well as
corresponding different symmetric nodes for the τk

i,j(s), depend-
ing on the IREPs of the different derivatives ∂/∂sk. For this

|τk
i,j([{r, �}])| ) |τk

i,j([{r,-π + �}])|

) |τk
i,j([{r,-�}])| ) |τk

i,j([{r, π - �}])| (13)

Γ(τk
i,j) × Γ( ∂

∂sl
) ) Γ(ψi(se; s)) × Γ( ∂

∂sk
) × Γ(ψj(se; s)) × Γ( ∂

∂sl
)

) Γ(τl
i,j) × Γ( ∂

∂sk
)

(14)

Γ(τk
i,j) ) Γ( ∂

∂sk
) × Γ( ∂

∂sl
) × Γ(τl

i,j) (15)

τ̃k
a,b,c,...,y,z)a ) τk

a,bτk
b,c ... τk

y,z)a (16)

Γ(τ̃k
a,b,c,...,y,z)a) ) Γ(ψa(se; s))2 × Γ(ψb(se; s))2 × ... × Γ(ψy(se; s))2 × Γ( ∂

∂sk
)Nloop

) {Γ( ∂

∂sk
) if Nloop is odd

A1 if Nloop is even
(17)

τ̃k
0,1,2,0 ) τk

0,1τk
1,2τk

2,0 (18)

Γ(τ̃�
0,1,2,0) ) Γ(τ�

0,1) × Γ(τ�
1,2) × Γ(τ�

2,0) ) Γ( ∂

∂�) ) A2

(19)

Γ(τ̃r
0,1,2,0) ) Γ(τr

0,1) × Γ(τr
1,2) × Γ(τr

2,0) ) Γ( ∂

∂r) ) A1

(20)

2996 J. Phys. Chem. A, Vol. 114, No. 9, 2010 Al-Jabour et al.



purpose, let us assume that the IREP of τk
i,j(s) is Γ(τk

i,j(s)) ) Γg,
and the value of τk

i,j(s) at a reference location s ) [{sl}]1 has
been determined to be τk

i,j([{sl}]1). Then, one can apply the
symmetry projection operator P̂Γg to generate the values of
τk

i,j([{sl}]h) at all of the symmetry-related locations [{sl}]h. Their
absolute values are identical, cf. eq 12, but the patterns of the
relative signs may differ, depending on the characters �g,h which
are involved in P̂Γg; see eq 2. Whenever the signs of τk

i,j([{sl}f])
and τk

i,j([{sl}]h) are different, there must be a node of τk
i,j(s) located

halfway between [{sl}f] and [{sl}]h, i.e.,

if

for the given IREP, Γ(τk
i,j(s)) ) Γg. Now theorem 15 implies

that the IREPs of τk
i,j(s) and τl

i,j(s) differ if Γ(∂/∂sk) * Γ(∂/∂sl).
By analogy of the derivation of eq 21, the patterns of the relative
signs of the NACTs τk

i,j([{sl}]g) and τl
i,j([{sl}]g) at symmetry-

related coordinates [{sl}]g, as well as the corresponding nodes
(21) should also differ, according to their IREPs.

For the present example C5H4NH with molecular symmetry
group C2V(M), Table 1 lists schemes of the different patterns of
signs of the NACTs, as well as the different nodes, depending
on their IREPs, for all four possibilities which are in accordance
with theorem 15. For example, consider the third possibility
when Γ(τx

i,j) ) A1. The corresponding sign pattern implies that
the τx

i,j(Ŝg[{r, �}]) at all symmetry-related values of coordinates
Ŝg[{r, �}], eq 7, have the same sign. Hence, τx

i,j(s) does not
possess any symmetry nodes. In contrast, Γ(τy

i,j) ) A2; hence,
τy

i,j(Ŝg[{r, �}]) has a pattern of alternating signs at the symmetry-
related coordinates Ŝg[{r, �}], and both the x- and y-axes are
nodal lines. Likewise, τ�

i,j and τr
i,j have the IREPs B1 and B2,

with corresponding different patterns of the relative signs, and
also with different x- or y-axes as nodal lines, respectively, as
illustrated schematically in Table 1. Note that these nodal lines
are infinite; i.e., they will impose corresponding changes of the
sign of the values of the NACTs even far away from any conical
intersections: this will be exploited for the subsequent quantum
chemistry calculations of the NACTs, cf. item xi.

G. Determination of the Irreducible Representations
(IREPs) of the NACTs. (vii) The results of steps i-vi, in
particular, the two general theorems 15 and 17 together with
the consequences for the patterns of the relative signs and nodes
of the NACTs, are quite useful, but they do not always suffice
to carry out the next task, i.e., to assign the IREPs of the NACTs.
For this purpose, we may have to add additional information
about the NACTs. In general, the amount of information that
is required in order to specify the IREP depends on the size G
of the molecular symmetry group. All groups which are
isomorphic to molecular point groups can be constructed by
means of a maximum of three symmetry operations Ŝh which
serve as generators. Accordingly, it suffices to specify no more
than three (nontrivial, i.e., beyond �g,E ) 1 for the identity E)
characters �g,h of these generators, in order to deduce the
corresponding IREP Γg.8 Accordingly, three items of informa-
tion, or even less depending on the size of the MS group, should
be sufficient to specify the requested IREP of the NACT. The
two general theorems 15 and 17 may be applicable for this
purpose. Here, we summarize two additional, well-known1,2

properties of the NACTs between two succesive isolated states
ψi, ψi+1, related to the CIs, and another property which involves
a third electronic state, cf. items a, b, and c below. These will
provide complementary information for the task of assigning
IREPs to NACTs.

(a) The contour integrals30 over the τi,i+1(s|Lg) evaluated along
closed loops denoted by Lg around the individual CIg

i,i+1 satisfy
a quantization rule;1 i.e., they are equal to +π or -π, depending
on the IREP-adapted signs of the τi,i+1 close to si,i+1

if the loop Lg encloses one single CIg
i,i+1. Here, eg

i,i+1 ) (1
denotes the “charge” of the CIg

i,i+1. Else,

if the loop does not enclose any CI. Here, the dot represents a
scalar product of the vectorial NACTs τi,i+1(s|Lg) and ds, which
have components τk

i,i+1(s|Lg) and dsk with respect to the sym-
metry-adapted coordinates sk, respectively; i.e., the integrations
(22) and (33) are over the tangential components of τi,i+1. For
convenience, we shall construct the loops Lg of the contour
integrals as a closed sequence of lines along individual
symmetry-adapted coordinates.

The quantization rule (22) holds if the loop is sufficiently
close to the CIi,i+1(si,i+1) such that NACTs due to other states j
* i, i + 1 do not interfere significantly; this corresponds to a
two-state (i, i + 1) model.1 Else, interfering NACTs give rise
to more general quantization rules.1,28 The quantization rule for
the NACTs has been exploited previously15 in order to reveal a
conical intersection in a given region of configuration space.1

In section III, we shall apply an alternative search for conical
intersections, based on the above-mentioned Longuet-Higgins
phase change theorem, with application to paths in configuration
space which may well include large amplitude motions, from
reactants via transition states to products, in the electronic
ground state.35,36 So far, these approaches have been used
without considerations of the molecular symmetry groups of
the NACTs.

(b) The planar τk
i,i+1(s) element is assumed to have poles. By

this, it is meant that, if it is written as τk
i,i+1(r̃, �̃), where (r̃, �̃)

are polar coordinates for an origin at the given conical
intersection point, it becomes singular at r̃ ) 0 and decays to
zero like 1/r̃ as r̃f ∞,1 with the ( signs imposed by the IREPs

(c) The wave function ψj(se; s) and ψj+1(se; s) may change
characters as the nuclear coordinates s pass from one side,
say, the “left, sl” hand side across the seam of CIj,j+1(sj,j+1)
to the other one, say, the “right, sr” hand side. For example,
if ψj(se; sl) and ψj+1(se; sr) represent essentially covalent or
diradical types of bonding, then these characters may switch to
ψj+1(se; sr) and ψj(se; sl), respectively. If this switch occurs close
to a specific configuration of the seam, say, at [sj,j+1]1, then
molecular symmetry implies that equivalent switches occur at
all other symmetry-adapted locations [sj,j+1]g. As a consequence,
the wave functions ψj and ψj+1 have the same IREPs. The
definition (11) then implies that the NACTs τk

i,j(s) and τk
i,j+1(s)

between two different states i < j and j + 1 should also

τk
i,j(sfh) ) 0 at sfh ) 1

2
([{sl}]f + [{sl}]h) (21)

τk
i,j([{sl}]f) ) -τk

i,j([{sl}]h)

I ds · τi,i+1(s|Lg) ) (π ) eg
i,i+1π (22)

I ds · τi,i+1(s|Lg) ) 0 (23)

τk
i,i+1(s) f (∞ for s f (si,i+1) (24)
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interchange. Moreover, relation 11 yields the same IREPs for
the NACTs τk

i,j(s) and τk
i,j+1. Turning the table,

in case of a switch

close to CIj,j+1(sj,j+1).

For the present model system C5H4NH, the size of the
molecular symmetry group C2V(M) is just G ) 4; i.e., in order
to assign the IREPs Γg of the NACTs (and consequently the
corresponding CIs, cf. item ix), one has to determine just two
nontrivial characters �g,h. For this purpose, one has to provide
just two pertinent pieces of information. As an example, we
shall consider the cases where a conical intersection CIi,i+1(si,i+1)
has been discovered at specific values of the symmetry-adapted
coordinates [si,i+1]1 ) [{ri,i+1, �i,i+1 ) π/2}]1. We shall then
employ the two properties (22) and (24) of these CIs in order
to determine the IREPs of the associated τk

i,i+1(s). The derivation
is given in the next paragraphs, using theorem 15 and the
corresponding relations of the patterns of the relative signs and
nodes of the NACTs; see Table 1. Later on, we shall apply the
result to the special case of τk

0,1(s), cf. step xi. Subsequently,
we shall use the rule (25) in order to determine the same IREPs
of the NACTs τk

0,1(s) and τk
0,2(s). Finally, we shall apply theorem

17 in order to determine the IREPs of the NACTs which are
still missing, i.e., τk

1,2(s).

The task of assigning the IREPs to all of the NACTs τk
i,i+1(�,r)

can be reduced to another one, i.e., determining the appropriate
combination of IREPs of the NACTs, out of four possibilities
which are listed in Table 1; this reduction is a consequence of
theorem 17. For this purpose, we will first employ the
quantization rule (22) for CIi,i+1({ri,i+1, �i,i+1 ) π/2}), as
specified in eq 28 below, in order to eliminate two of the four
possible combinations of IREPs of the NACTs which are listed
in Table 1. Subsequently, we shall apply the pole property (24)
in order to eliminate another possibility, thus determining the
one and only one combination of the IREPs of the NACTs
which is left after elimination of the other three choices.

The example where a conical intersection CI1
i,i+1([si,i+1]1) has

been discovered at [si,i+1]1 ) [{ri,i+1, �i,i+1 ) π/2}]1 is illustrated
schematically in Figure 2a. In order to apply the quantization
rule (22), we construct the loop L1 around CI1

i,i+1(si,i+1) in the
(r, �)-plane, as shown in Figure 2a, cf. figure legend. The
contour integral (22) then consists of three contributions for
the torsional (tor) and two radial (rad) lines of the loop

where

Its absolute value should be equal to π;1 the sign or “charge”
e1

i,i+1 is arbitrary because the signs of the underlying wave
functions ψi and ψi+1 are arbitrary, cf. eq 10. The choice e1

i,i+1

) +1 in eq 28 is made ad hoc, for convenience of the
subsequent illustrations, see section III; it implies corresponding
consistent sets of relative (same or opposite) signs or charges
of all the NACTs and CIs, but it will not affect any of the
subsequent conclusions. Accordingly, we assign the charge
e1

i,i+1 ) 1 to CIi,i+1([{ri,i+1, �i,i+1 ) π/2)}]1), as shown in
Figure 2a. The specification (28) of the quantization rule (22)
will now allow us to eliminate the second and fourth
combinations of the IREPs of the NACTs which have been

Γ(τk
i,j) ) Γ(τk

i,j+1) (25)

τk
i,j(sl) f τk

i,j+1(sr) (26)

τk
i,j+1(sl) f τk

i,j(sr) (27)

I ds · τi,i+1(s|L1) ) Itor + Irad,1 + Irad,2 ) e1
i,i+1π

(28)

Figure 2. Determination of the IREPs of the NACTs τk
i,i+1(s) and the

corresponding IREPs and seams of the CIs, for two cases where a
conical intersection CI1

i,i+1 has been discovered at the symmetry-adapted
coordinates [si,i+1]1 ) [{ri,i+1,�i,i+1}]1, where �i,i+1 ) π/2 (panels a-c)
or 0 (panels d-f); see also Figure 1. The CIs are surrounded by loops
L1 (L1′) which are drawn by continuous lines. They consist of three
parts, as indicated by three small arrows: a “torsional” line along the
torsional angle �, from � ) �2 to π - �2 (panel a) or from � ) -�2

to +�2 (panel d), and two “radial” lines with opposite directions along
the radial coordinate r, from 0 to r1 and from r1 to 0, respectively. The
values of the contour integrals (22) for these loops are assumed to be
π; the + sign is used as “charge” e1

i,i+1 ) 1 for these CIs. The symmetry
properties of the NACTs are derived from their values at symmetry-
related locations on the loops, which are indicated by asterisks (*) on
the torsional line and by crosses (×) on the radial lines. Bold arrows
point to these symbols * and ×, indicating their symmetry-related values
of the coordinates, cf. Table 1. The irreducible representations of the
NACTs and CIs imply the existence of additional symmetry-related
CI2

i,i+1 which have opposite charges, e2
i,i+1. These are surrounded by

equivalent loops L2 (L2′) (dashed lines) with additional symmetry-related
positions which are labeled again by the symbols * and ×, respectively.
The NACTs at these locations * and × on the dashed loops L2 (L2′)
have the same absolute values as for the continuous loops L1 (L1′) but
opposite signs. Panels b and e show loops L3 and L3′ which do not
encircle these CIs; they consist of three parts, i.e., a quarter circle along
the torsional angle � which approaches the CIs located at �i,i+1 ) π/2
(panel c) or 0 (panel d), plus two lines along the x and y axes. The
contour integrals (23) for these loops L3 (L3′) are zero. Finally, panels
c and f with the loops L4, L5 (L4′, L5′) around two hypothetical symmetry-
related CIi,i+1(si,i+1) (indicated by ?) are used to show that the seams of
the conical intersections are restricted to symmetry-adapted coordinates
si,i+1 ) {ri,i+1,�i,i+1}, where �i,i+1 ) π/2 and -π/2 or 0 and -π or +π,
respectively; see text.

Itor ) ∫�2

π-�2 d�τ�
i,i+1(r1, �|L1) (29)

Irad,1 ) ∫0

r1 drτr
i,i+1(r, �2|L1) (30)

Irad,2 ) ∫r1

0
drτr

i,i+1(r, π - �2|L1) (31)
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specified in Table 1: both have alternating relative signs of
τ�

i,i+1(r1, �) at the symmetry-related coordinates (e.g., see the stars
on loop L1 in Figure 2a) which contribute to the torsional integral
(29), hence Itor ) 0. Moreover, the NACTs τr

i,i+1(r, �2|L1) and
τr

i,i+1(r, π - �2|L1) which contribute to the radial integrals (30)
and (31), respectively, are identical (e.g., see the crosses × on
loop L1 in Figure 1a) so that Irad,1 + Irad,2 ) 0. As a consequence,
the second and fourth combinations of IREPs would yield Itor

+ Irad,1 + Irad,2 ) 0, which is incompatible with the quantization
rule (28) for the NACTs. For the time being, we are thus left
with just two possible combinations of IREPs of the NACTs,
i.e., either the first or the third one, cf. Table 1.

Next, we shall exploit the pole property of the NACTs close
to CIi,i+1, i.e., rule 24, in order to eliminate the first combination
of IREPs of the NACTs, cf. Table 1. For this purpose, let us
consider loop L3 which is shown in Figure 2b: it consists of a
quarter circle (quc) and two lines along the y- and x-axes. The
radius r′ of the quarter circle is chosen such that the loop does
not encircle the CI but it approaches the CI for � f π/2,
implying ever increasing absolute values of τ�

i,i+1(r′,�), cf. rule
24. According to eq 23, the corresponding contour integral
should be equal to zero. We shall show that this requirement
cannot be satisfied by the first possible combination of IREPs
of the NACTs, cf. Table 1. Again, the contour integral may be
separated into three line integrals, specifically for the quarter
circle (quc) plus the contributions on the y- and x axes,

where

Now for the first possible combination of IREPs of the NACTs,
on one hand, τx

i,i+1 and τy
i,i+1 have nodes along the x- and y-axes;

hence, Ix ) Iy ) 0, cf. Table 1. On the other hand, rule 24
implies that Iquc * 0 because it is dominated by the large
contributions of τ�

i,i+1(r′,�|L3) close to � ) π/2. The net result
is thus Iquc + Ix + Iy * 0, which is incompatible with eq 32.

In conclusion, if a conical intersection CI1
i,i+1 is discovered

at �i,i+1 ) π/2, then the quantization of the NACTs, eq 22,
together with the pole property of the NACTs close to the CI,
eq 24, eliminate all possible combinations of the IREPs of the
NACTs, except the third one; thus, Γ(τ�

i,i+1(s)) ) B1, Γ(τr
i,i+1(s))

) B2, etc., cf. Table 1. This result is a global property, i.e.,
independent of the coordinates which are used in the derivation.
It is equivalent to say that the two properties (22) and (24) of
CI1

i,i+1, together with theorem 15, determine the IREPs Γ(τk
i,i+1(s))

of all of the NACTs, and this is equivalent to determining two
nontrivial characters �g,h for each of them.

Likewise, let us consider another example where CI1
i,i+1 is

discovered at �i,i+1 ) 0. Arguments which are entirely analogous
to those which have just been applied to CIi,i+1([{ri,i+1, �i,i+1 )
π/2}]1) allow one to eliminate all possible combinations of
IREPs of the NACTs, except the fourth one, cf. Table 1. The
loops L1′ and L3′ for the corresponding contour integrals are
shown in Figure 2d and e, analogous to those shown in panels

a and b, respectively. In particular, the quantization of the
NACTs (22) applied to the contour integral for the loop L1′
shown in Figure 2d eliminates the second and third combinations
of the IREPs of the NACTs, whereas rule 24 for the pole
property of the NACTs close to CI1

i,i+1 applied to the contour
integral for loop L3′ shown in Figure 2e eliminates the first
combination.

H. Charges of the Conical Intersections at Symmetry-
Related Positions. (viii) After determination of the IREPs of
the NACTs τk

i,i+1(s), it is straightforward to define the corre-
sponding charges of the CIg

i,i+1 at all symmetry-related coordi-
nates [{ri,i+1, �i,i+1}]g, g ) 1, 2, 3, 4. For the first example where
CI1

i,i+1 has been located at [{ri,i+1, �i,i+1 ) π/2}]1, applications
of the symmetry operations Ŝ1 ) E and Ŝ4 ) (12)* yield the
same locations [{ri,i+1, �i,i+1}]1 ) [{ri,i+1, �i,i+1}]4, whereas the
operations Ŝ2 ) (12) and Ŝ3 ) E* yield the “opposite” location
[{ri,i+1, �i,i+1}]2 ) [{ri,i+1, �i,i+1}]3 ) {ri,i+1, -π/2}. For this
case, the complete set of symmetry-related CIs consists,
therefore, of just two species, CI1

i,i+1 ) CIi,i+1([{ri,i+1, �i,i+1 )
π/2}]1) and CI2

i,i+1 ) CIi,i+1([{ri,i+1, �i,i+1 ) -π/2}]2). We shall
now show that these two CIs have opposite charges, as
illustrated in Figure 2a. For this purpose, we use Ŝ2 ) (12) to
map loop L1 around CI1

i,i+1 (continuous lines) on the symmetry-
related loop L2 around CI1

i,i+1 (dashed lines), cf. Figure 2a.
Corresponding symmetry-related locations on the torsional and
radial lines are marked again by stars and crosses, respectively.
The IREP Γ(τ�

i,i+1) ) B1 implies that the NACTs τ�
i,i+1(s|L1) and

τ�
i,i+1(s|L2) at the locations “*” on the torsional paths of loops

L1 and L2 have the same absolute values but opposite signs, cf.
Table 1. Likewise, the IREP Γ(τr

i,i+1) ) B2 implies that the
NACTs τr

i,i+1(s|L1) and τr
i,i+1(s|L2) at the locations “×” on opposite

radial segments of loops L1 and L2 also have the same absolute
values but opposite signs. As a consequence, if the contour
integral (28) for loop L1 is equal to +π, then the analogous
contour integral for loop L2 has the opposite value, -π. These
opposite signs are then used to assign opposite charges e1

i,i+1 )
+1 and e2

i,i+1 ) -1 to CI1
i,i+1 or CI2

i,i+1, respectively. Analogous
arguments may be applied to the second example where the CI
has been located at [{ri,i+1, �i,i+1 ) 0}]1. Again, applications of
all symmetry operations Ŝk yield the complete set of symmetry-
related CIs which consists of just two species, CI1

i,i+1 )
CIi,i+1([{ri,i+1, �i,i+1 ) 0}]1) and CI2

i,i+1 ) CIi,i+1([{ri,i+1, �i,i+1

) ( π}]2). Application of Ŝ2 ) (12) maps loop L1′ around CI1
i,i+1

to loop L2′ around CI2
i,i+1, cf. Figure 2d. The IREPs Γ(τ�

i,i+1) )
B2 and Γ(τr

i,i+1) ) B1 imply opposite values +π and -π of the
contour integrals for loop L1′ and L2′ , imposing opposite charges
e1

i,i+1 ) +1 and e2
i,i+1 ) -1 on CI1

i,i+1 and CI2
i,i+1, respectively,

cf. Figure 2d. The derivation of the opposite charges of the
conical intersections for the second example in terms of
Cartesian coordinates is shown in Appendix A.

In the subsequent applications, we shall also encounter the
case where a conical intersection CIj,j+1([{rj,j+1, �j,j+1}]1) is
discovered for another set of PESs labeled Vj and Vj+1, at
values �j,j+1 different from 0, +π/2, -π/2, or (π. Again,
we shall employ the properties of the CIs in order to
determine the IREPs of the corresponding NACTs τk

j,j+1(r,�),
but the task will be facilitated by the fact that we already
know the IREPs of τk

i,i+1(r, �) which have been determined
for CIi,i+1([{ri,i+1, �i,i+1}]1) for the PESs Vi and Vi+1 located
at �i,i+1 ) π/2 or 0, cf. Figure 2a and d, respectively.

I. Irreducible Representations of the Conical Intersec-
tions. (ix) After the assignment of the charges of the CIg

i,i+1 at
all of the symmetry-related locations [s]g with g ) 1, ... , G
(see item viii), one may apply the projection operators (2) to

I ds · τi,i+1(s|L3) ) Iquc + Iy + Ix ) 0 (32)

Iquc ) ∫0

π/2
d�τ�

i,i+1(r', �|L3) (33)

Iy ) ∫r'

0
dyτy

i,i+1(x ) 0, y|L3) (34)

Ix ) ∫0

r'
dxτx

i,i+1(x, y ) 0|L3) (35)
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the set of charged CIi,i+1 in its order to assign its IREP. In
brief,

if

Application to our model system C5H4NH with MS group
C2V(M) yields

and

where �i,i+1 denotes the “first” conical intersection; see also the
relative signs which are listed for arbitrary objects with
irreducible representations B1 and B2 in Table 1, respectively.

J. Molecular Symmetry Effects on the Topology of Coni-
cal Intersections. (x) Finally, we discover an important
consequence of items i-ix; i.e., the domains of the seams of
the CIs may be restricted to specific topologies due to molecular
symmetry. As an example, consider the case where CI1

i,i+1 has
been discovered at [{ri,i+1, �i,i+1 ) π/2}]1, implying the
symmetry-adapted CI2

i,i+1 at [{ri,i+1, �i,i+1 ) -π/2}]2, cf. Figure
2a. We shall show that, for this scenario, the seam of the CIs in
the (r, �)-plane are constrained to �i,i+1 ) (π/2. For this
purpose, let us assume hypothetically that the seam of this
conical intersection with symmetry B1 (cf. item ix) includes a
CI which is not located at � ) π/2 or � ) -π/2, as illustrated
by one of the hypothetical marks “?” in Figure 2c; application
of all symmetry operations would then generate the set of
analogous CIs at symmetry-related locations; two representa-
tives of these kinds of hypothetical CIs are illustrated by
marks “?” in Figure 2c, with corresponding coordinates
{sk

i,i+1} which include the values �i,i+1 and π - �i,i+1,
respectively, 0 e �i,i+1 < π/2. Figure 2c also shows
symmetry-related contours L4 and L5 around these hypotheti-
cal CIs; they contain the same symbols * and × as those
shown in Figure 2a. The symmetries of the NACTs which
have been determined in item vii yield the same values ()
+π) of the contour integrals evaluated along these contours.
Now let us walk from each of the hypothetical CIs which
have been sketched in Figure 2c along the hypothetical seam
to the original CI which has been marked by “+” in Figure
2a. Simultaneously, the two loops L4 and L5 around the two
individual hypothetical CIs are merged to a single one which
contains two hypothetical CIs. The contour integral along
the single loop is then equal to the sum of the individual
loop integrals; i.e., it is equal to +2π. On arrival at the
original CI1

i,i+1, let the merged loop coincide with the one
shown in Figure 2a. However, we know from item viii that
the loop integral for that single loop is equal to +π, not +2π,
cf. eq 28. This contradiction falsifies the assumption of the
hypothetical CIs. The seams of the CI1

i,i+1 and CI2
i,i+1 are

restricted, therefore, to �i,i+1 ) π/2 or -π/2.
Analogous arguments can be applied to the other example

where CI1
i,i+1 has been discovered at �i,i+1 ) 0, with the

symmetry-adapted CI2
i,i+1 at (π, cf. Figure 2d. Their seams in

the (r, �)-plane are restricted by molecular symmetry to the
values �i,i+1 ) 0 or (π. Assumptions of hypothetical CIs on
the seam at different symmetry-related coordinates �i,i+1 and
-�i,i+1 where 0 e �i,i+1 < π/2 surrounded by loop L4′ and L5′ ,
as shown in panel 2f, would lead to contradictions, analogous
to the preceding paragraph. By extrapolation, these two ex-
amples show that for specific planes of the MS-adapted
coordinates, the seams of the CIs may be restricted to specific
values of some of the symmetry-adapted coordinates, depending
on the symmetry of the NACTs and CIs.

III. Application and Discussions Based on Quantum
Chemistry Results for the Model System C5H4NH

Section II contains the rather general recipe of steps i-x for
the determination of the IREPs of the NACTs and CIs, for
molecules with molecular symmetry group supporting 1-d
IREPs. The model system C5H4NH has served as an example;
so far, we have exploited the rather general properties of the
corresponding molecular symmetry group C2V(M). In this
section, we shall add quantum chemistry ab initio evaluations
of the NACTs in restricted domains, in order to determine the
IREPs of the NACTs and CIs for the lowest three singlet states,
and to explore the topologies of the seams of the CIs. For a
coherent presentation of the results, we shall refer to the previous
items i-x, adding the new ones xi and xii.

(i) The molecular symmetry group of C5H4NH is C2V(M), cf.
section II.

(ii and iii) It is convenient to solve these combined tasks step
by step, as follows:

Step 1: The location of the first CI1
0,1 between electronic states

S0 and S1 is based on the Longuet-Higgins theorem.32,33 In
practice, it involves several substeps:39

First, we employ quantum chemistry to calculate the potential
minima and transition states (TS) for the PES of the electronic
ground state S0. All of the results presented below (also those
for the other PES, the NACTs, the double and triple CIs, and
the seams of the CIs) have been obtained at the CAS(10/9)/cc-
pVDZ level of the CASSCF methodology40 as implemented in
the GAMESS41 and MOLPRO42 program suites. The active
space of the CASSCF calculations includes 9 molecular orbitals
(MO) occupied by 10 electrons, i.e., all π orbitals (three
occupied π ones and three unoccupied π* orbitals), together
with three σ-type MOs (the occupied one for the lone electronic
pair of the N atom, the occupied N-H bond MO, and the virtual
σ* (mainly N-H) MO). These σ-MOs were taken into account
because the studied syn-anti isomerization involves a change
in hybridization of the N atom; see below. The full π-active
space together with these σ orbitals provide an adequate
description for this part of the PES, using the standard cc-pVDZ
basis set. Different from the rest of this paper, these CASSCF
calculations employ the “local” molecular point groups of these
stationary states, as is adequate for quantum chemistry. The
resulting planar geometry of C5H4NH at the potential minimum
is shown in Figure 3; it is called the syn-A′ form of C5H4NH,
with IREP A′ for the local Cs symmetry.

The “global” molecular symmetry C2V(M) implies that
C5H4NH possesses an equivalent minimum of the PES for the
anti form, again with local IREP A′. The two electronic valence
bond (VB) structures for the syn and anti geometries, with
different orientations of the lone electron pairs due to sp2

hybridization at the nitrogen, are sketched in Figure 4.
In-plane inversion of the CNH fragment of C5H4NH from

its syn form to the anti form leads via the transition state for

Γ(CIi,i+1) ) Γh (36)

P̂ΓhCIi,i+1 ) CIi,i+1 (37)

Γ(CIi,i+1) ) B1 if �i,i+1 ) π/2 (38)

Γ(CIi,i+1) ) B2 if �i,i+1 ) 0 (39)
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inversion, denoted as TSinversion. It is located halfway between
the syn and anti configurations, with corresponding IREP A1 of
the local molecular point group C2V, and with energy relative
to the syn form as documented in Figure 3. Isomerization via
TSinversion does not involve the breaking or making of chemical
chemical bonds, but the N atom changes hybridization from
sp2 at the potential minima to sp + p at TSinversion, as illustrated
schematically in Figure 4. The geometries of the reactant,
products, and TSinversion are similar except for the CNH bond
angle and the CN and NH bond lengths, which are shorter for
TSinversion than for the minima, due to sp hybridization (see
Figures 3 and 4).

In contrast with inversion, torsion of the NH bond around
the CN axis of the C5H4N fragment leads to a biradical structure
which supports two different transition states with the same local
Cs symmetry but different geometries, energies, electronic VB
structures, and local IREPs of the electronic wave function;
accordingly, these are denoted TSbiradical A′ and TSbiradical A′′, cf.
Figures 3 and 4. Specifically, the VB structures of both biradical
TSs have one unpaired electron located on a p orbital of the N
atom (orthogonal to the π-system), but the other unpaired
electron differs; i.e., for the TSbiradical A′′, it is localized at the C

atom of the CN bond, whereas, for TSbiradical A′, it spreads on
the allyl fragment.

Molecular symmetry C2V(M) implies that the symmetry
operations (12), E*, and (12)* would map these three TS to
analogous molecular-symmetry-adapted ones, but for the
present purpose of localizing the first CI1

0,1 between V0 and
V1, it suffices to know just those species which are illustrated
in Figures 3 and 4, together with the corresponding energies,
local (!) symmetries and IREPs of the electronic wave function
ψ0(se; s). Note that the quantum chemistry results do not provide
any direct information about the global IREPs of the molecular
symmetry C2V(M).

Second, we construct the so-called Longuet-Higgins (LH)
loops. For this purpose, the stationary points, i.e., the minima
and transition states of the PES V0(s) of C5H4NH in the
electronic ground state S0 are considered as so-called “an-
chors”.31 The LH loops connect few selected anchors. Three
different LH loops are shown in Figure 4. Each of them consists
of a unique pair of reaction paths from the syn form of C5H4NH
via one of the three different TSs to the anti form.

Third, we determine whether the LH loops are sign
preserving, or sign inverting. The criteria are given in ref
39, based on a comparison of the IREPs of the electronic
wave function ψ0(se; s) with respect to the same local molecular
point group. For this purpose, we note that all of the potential
minima and the two TSbiradical have local Cs symmetry. For
TSinversion, let us consider, therefore, the same subgroup Cs of
the local molecular point group C2V. The IREP A1 of TSinversion

then correlates with A′ for the subgroup Cs of C2V. As a result,
the LH loop denoted LH1 ) (syn-A′ - TSinversion A′ - anti-A′
- TSbiradical A′ - syn-A′) is sign preserving, because the
electronic wave function has the same local (!) IREPs A′ at all of
the anchors. In contrast, the two other loops denoted LH2 ) (syn-
A′ - TSinversion A′ - anti-A′ - TSbiradical A′′ - syn-A′) and LH3 )
(syn-A′ - TSbiradical A′ - anti-A′ - TSbiradical A′′ - syn-A′) are sign
inverting because they involve different local IREPs, A′ and A′′.39

Fourth, according to the LH theorem, a single CI exists within
any LH loop if the loop contains the minimum number of
anchors, and if it is sign inverting. Hence, there are CIs in the

Figure 3. Geometries of the syn form of C5H4NH in the electronic ground state S0, three transition states (TS) between the syn and anti forms, and
two conical intersections (CIs) which are located on the paths (continuous lines, schematic) between the TS with opposite local IREPs A′ and A′′.
The results are obtaind by CAS(10/9)/cc-pVDZ calculations. Also shown are the IREPs for the local molecular point groups (NOT the molecular
symmetry group!) and the energies relative to the minimum of the adiabatic potential V0 in the electronic ground state.

Figure 4. Valence bond (VB) structures of the syn and anti forms of
C5H4NH in the electronic ground state and three transitions states for
syn-anti isomerization, together with three Longuet-Higgins (LH) loops
which connect these stationary points or “anchors”.
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LH loops LH2 and LH3 but not in LH1. The CIs can be located
by interpolation on paths which connect anchors of the
surrounding LH loop with different local IREPs, e.g., between
opposite transition states.39 Specifically, for LH2, a CI between
the PES V0(s) and V1(s), denoted as S0/S1 CI (1A′/1A′′), is located
on the connecting line between TSinversion 1A′ and TSbiradical 1A′′,
close to TSbiradical 1A′′. The line is illustrated schematically in
Figure 3, together with the geometry and energy of the CI.
Likewise, LH3 should support another CI between V0 and V1 located
on the line between TSbiradical 1A′ and TSbiradical 1A′′. A systematic
search along this line yields even a triple degeneracy of V0, V1,
and in addition V2. This triple CI is denoted S0/S1/S2 CI (1A′/
1A′′/2A′), as shown in Figure 3. A triple CI is a connecting
point of the seams of the S0/S1 and S1/S2 CIs. These seams will
be investigated below, cf. item x. The existence of this triple
degeneracy is implied by the coexistence of three different
reaction coordinates from the syn-A′ form of C5H4NH via three
different TSbiradical 1A′, TSinversion 1A′, and TSbiradical 1A′′ to the
anti-A′ form.34 The energy of S0/S1/S2 CI (1A′/1A′′/2A′) relative
to the potential minimum, ∆E ) 3.46 eV, is larger than ∆E )
2.80 eV for S0/S1 CI (1A′/1A′′), because, in general, V2 g V1 g
V0.Forcomparison,theverticalexcitationenergyforFranck-Condon
transition from the syn-A′ or anti-A′ forms of C5H4NH (S0) to
the S1 state is 4.47 eV, which is enough to reach all of these
funnels and transition states.

Step 2: After location of two representatives of the CIs, we
define convenient molecular-symmetry C2V(M)-adapted coor-
dinates s ) {sk}. The different geometries of the syn and anti
forms of C5H4NH, the three TSs, and the CIs (Figure 3) show
that one would need, in principle, many such coordinates sk to
describe motions between these configurations in detail. In view
of our goal to demonstrate MS effects on NACTs and CIs as a
proof of principle, the criteria for our choice of the sk are less
ambitious: We shall choose only two coordinates s ) {s1,s2}
while freezing all the others; this is of course at the expense
of covering the whole configuration space for all of the
stationary points and all CIs of V0. Instead, we focus on a
scenario for large amplitude motions which start in the
domain close to the syn form of C5H4NH, say after
Franck-Condon (FC) excitation from S0 to S1, via the CI with
smallest energy, i.e., S0/S1 CI (1A′/1A′′), to the anti form in the
electronic ground state S0. Since S0/S1 CI (1A′/1A′′) is close to
TSbiradical A′′ for torsional motion from the syn form to the anti
form of C5H4NH, cf. Figure 3, one of our molecular-symmetry-
adapted coordinates should describe torsional motion.

Before giving a precise definition for the torsion angle and
also for the second MS-symmetry-adapted coordinate, let us
first consider how to “freeze” the complementary coordinates.
For this purpose, we note that all of the structures shown in
Figure 3 have similar C5H4N fragments; it will, therefore, be

reasonable to freeze the coordinates of the C5H4N fragment in
a C2V(M) symmetry-adapted manner. There are various ways
to do that. Our choice is based on the observation that, for the
syn form of C5H4NH, the C5H4N fragment is planar (local Cs

symmetry), but it does not have another perpendicular symmetry
plane. In contrast, for S0/S1 CI (1A′/1A′′), the five-membered
carbon ring turns out to be not exactly but almost planar. More
specifically, here the shape of the C5H4NH fragment looks like
the symmetrical (Cs) wings of a butterfly folded away from the
planar reference plane, by just 0.0367 radians (2.1°), with the
CN bond as the “head of the butterfly”, in the (local) vertical
symmetry plane between the “wings”. The two limiting albeit
very similar geometries of the C5H4N fragment for the syn and
anti forms as well as for S0/S1 CI (1A′/1A′) suggest, as a
compromise, that this fragment should be frozen such that it
has both perpendicular symmetry planes; i.e., it should have
local C2V symmetry, with the nuclear coordinates close to those
of the limiting forms. For simplicity, we freeze all bond lengths
and bond angles of the “butterfly” form of S0/S1 CI (1A′/1A′),
except that the “wings” are rotated just slightly by those 0.0367
radians such that the C5H4 ring becomes planar; at the same
time, the “head”, i.e., the CN bond, is also rotated by just 0.004
radians into the plane of the C5H4 fragment. As a consequence,
the local symmetry of the C5H4N fragment becomes C2V, with
the CN axis as the (local) C2 axis. The distance of the proton
of the NH bond from this CN axis is r ) 1.0 Å. Figure 3 shows
that all geometries of the C5H4N fragment are similar to this
C2V structure, not only for S0/S1 CI (1A′/1A′′) but also for all of
the other stationary points of V0. Furthermore, Figure 1b shows
that this C2V geometry is robust with respect to all symmetry
operations E, (12), E*, and (12)* of C2V(M); i.e., this geometry
of the C5H4N fragment is described implicitly in terms of frozen,
symmetry-adapted coordinates, which need not be specified,
however, because they are irrelevant for the purpose of this
paper. With this implicit definition of the frozen coordinates,
the symmetry-adapted torsional angle � and the complementary
“radial” coordinates are defined as two cylindrical coordinates
for rotation of the proton of the NH bond around the CN axis,
relative to the C5H4N (C2V) fragment. Their (global) IREPs are
A2 and A1, respectively, cf. Table 1. The “prize” for this
reasonable and rather simple choice of just two C2V(M)-adapted
coordinates is that motions along s ) {r, �} may approach
geometries of the syn and anti forms of C5H4NH as well as
S0/S1 CI (1A′/1A′′) rather closely but not perfectly. For example,
the syn and anti forms and the S0/S1 CI (1A′/1A′′) are
approximated for {r, �} ) {1.0 Å, 0}, {1.0 Å, (π}, and {1.0
Å, π/2}, respectively, but the energies 0.47 and 2.69 eV differ
from the exact references, 0.00 and 2.80 eV, respectively.

Step 3: Using the C2V(M)-adapted coordinates {r, �}, the
results for the quantum chemistry calculations of the adiabatic

Figure 5. Adiabatic potentials V0 (black continuous lines), V1 (gray continuous lines), and V2 (dashed lines) of C5H4NH as a function of the
torsional angle � for r ) 1.0 Å (a), 0.8 Å (b), and 1.2 Å (c).
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PES Vj, j ) 0, 1, 2, versus � are shown in Figure 5a, b, and
c for three different values of r ) 1.0, 0.8, and 1.2 Å,
respectively. The value r ) 1.0 Å corresponds to the case of
S0/S1 CI (1A′/1A′′); see step 1. Accordingly, Figure 5a shows a
near degeneracy of V0 and V1 at {r ) 1.0 Å, � ) π/2} with
mean energy (V0 + V1)/2 ) 2.69 eV and energy gap V1 - V0

e 0.03 eV, which confirms the signature of S0/S1 CI (1A ′/1A′′)
which has been located in step 1. From now on, we shall refer
to this as the “first” (subscript 1) CI1

0,1, using the notation for
the “global” MS C2V(M); see section II. The corresponding
coordinates are [{r0,1 ≈ 1.0 Å, �0,1 ) π/2}]1. Application of
the symmetry operations E, (12), E*, and (12)* generates the
complete set of MS-adapted CI1

0,1 and CI2
0,1, where CI2

0,1 is located
at [{r0,1 ≈ 1.0 Å, �0,1 ) -π/2}]2.

Incidentally, Figure 5a also shows a near degeneracy of V1

and V2, with mean energy (V1 + V2) ) 3.96 eV and gap V2 -
V1 e 0.02 eV, located at {r ) 1.0 Å, � ) 0.628(36°)}. By
extrapolation, we conclude that this is a signature of a conical
intersection CI1

1,2 located at [{r1,2 ≈ 1.0 Å, �0,1 ≈ 0.628}]1. The
symmetry operations (12), E*, and (12)* generate the complete
set of symmetry-adapted CIs including CI2

1,2 at [{r1,2 ≈ 1.0 Å,
�1,2 ≈ -π + 0.628 ) -2.513(-144°)}]1, CI3

1,2 at [{r1,2 ≈ 1.0
Å, �2

0,1 ≈ -0.628(-36°)}]1, and CI4
1,2 at [{r1,2 ≈ 1.0 Å, �1,2 ≈

π - 0.628 ) 2.513(144°)}]4; compare Figures 1b and 5a.
Figure 5b for the adiabatic PES at r ) 0.8 Å shows two

molecular-symmetry-adapted avoided crossings of V0 and V1 which
remind us of the CI1

0,1 and CI2
0,1 at � ) π/2 and -π/2, respectively.

The energy gap V1(r ) 0.8 Å, � ) π/2) - V0(r ) 0.8 Å, � )
π/2) at the avoided crossing is, however, much larger than
V1(r ) 1.0 Å, � ) π/2) - V0(r ) 1.0 Å, � ) π/2) ) 0.03 eV
for the near degeneracy close to CI1

0,1. In addition, Figure 5b
also shows four C2V(M)-adapted near degeneracies of V1 and
V2 which remind us of CIg

1,2, g ) 1, 2, 3, 4, which have been
discovered in Figure 5a. Specifically, in Figure 5b, CI1

1,2 is
located at [{r1,2 ≈ 0.8 Å, �0,1 ≈ 1.047(60°)}]1. The symmetry
operations of C2V(M) applied to CI1

1,2 generate the other three
CIg

1,2, g ) 2, 3, 4, analogous to Figure 5a. It is important to
note that the values of the radial and torsional coordinates
[{r1,2, �1,2}]g of the symmetry-adapted CIg are different in Figure
5a and b. In contrast, both figures point to the same values of
the torsional angles � ) π/2 or -π/2 for CI1

0,1 and CI2
0,1,

respectively.
Figure 5c for the adiabatic PES at r ) 1.2 Å shows avoided

crossings not only for V0 and V1 but also for V1 and V2. Again,
these point to neighboring sets of symmetry-adapted CIg

0,1, g )
1, 2, and CIg

1,2, g ) 1, 2, 3, 4, similar to those which have been
discovered and confirmed in Figure 5a and b, respectively.
Apparently, the locations of the neighboring CIg

0,1 are at the same
torsional angles � ) π/2 and -π/2, whereas pairs of corre-
sponding torsional angles for CIg

1,2 have moved to and merged
at � ) π/2 and � ) -π/2.

The results shown in Figure 5a already imply an empirical
working hypothesis; i.e., the seams of the conical intersections
CIg

0,1 in the (r, �)-plane are restricted to � ) π/2 or � ) -π/2,
whereas the seam of the CIg

1,2 extends over all values of �. A
systematic analysis will be added in item x.

(iv) Using the symmetry-adapted coordinates {r, �}, the
NACTs are defined, in accord with eq 10, as

and

In practice, they are calculated by means of finite differences;
specifically, we employ the approximations

and

which are valid to third orders of the parameters ∆r and ∆�
for the finite differences. The choice of these parameters is made
considering two opposite requirements: on one hand, the request
of numerical convergence suggests very small values of ∆r and
∆�; in any case, they should be much smaller than the widths
of any sharp peaks which may appear in the NACTs, in
particular close to the CIs. On the other hand, they should not
be chosen smaller than the limits which are imposed by the
sensitivity of the quantum chemistry calculations of the elec-
tronic wave functions with respect to very small shifts of the
nuclear positions. As a compromise, we employ the values ∆r
) 0.0189 Å and ∆� ) 1.74 × 10-4 (0.01°) for the subsequent
results.

Let us first focus on the quantum chemical results for the
torsional NACTs; some complementary results for the radial
NACTs τr

i,j will be discussed in item xii. The τ�
i,j(r, �), r ) 1.0,

0.8, and 1.2 Å, in the domain 0 e � e π/2 are shown in Figure
6a, b, and c, respectively. For the discusssion, we also refer to
the correponding near degeneracies versus avoided crossings
of the Vj which point to rather close versus not so close
neighboring locations of the CIs, as discovered in Figure 5a, b,
and c, respectively. For example, for r ) 1.0 Å, Figure 5a
allowed us to locate CI1

0,1 and CI1
1,2; see item ii. Figure 6a shows

corresponding large peaks of the NACTs τ�
0,1 and τ�

1,2 close to
the CI1

0,1 and CI1
1,2, respectively, with rapid decay as one moves

away from the CIs. This is in accord with the pole property
of the NACTs close to CIs, eq 24. The sign of these peaks
of the NACTs close to these “first” CI1

0,1 and CI1
1,2 are

arbitrary, because the signs of the underlying electronic wave
functions ψj(se; {r, �}), j ) 0, 1, 2, are arbitrary. As a
convention, we have assigned positive signs to the NACTs close
to the “first” CIs, cf. Figure 6a. In contrast, there is no near
degeneracy between V0 and V2 in the restricted domain {r )
1.0 Å, 0 e � e π/2}; the maximum absolute value of the
corresponding τ�

0,2 is, therefore, much smaller than the peak
values of τ�

0,1 or τ�
1,2. The signs of τ�

0,2 are no longer arbitrary,
however; i.e., they depend on the given assignments for τ�

0,1

and τ�
1,2 because all of the torsional τ�

i,j involve the same
electronic wave functions labeled i ) 0, 1 and j ) 1, 2 (i < j).
As a consequence, τ�

0,2 is negative in the domain close to CI1
1,2

such that the values of τ�
0,2 and τ�

0,1 interchange close to CI1
1,2,

cf. Figure 6a. As discussed in section II, item vii c, this points
to a switch of the characters of the electronic wave functions
ψ1(se; {r ) 1.0 Å, �}) and ψ2(se; {r ) 1.0 Å, �}) close to
CI1

1,2.

τr
i,j(r, �) ) 〈ψi(r, �)|

∂

∂r
ψj(r, �)〉 (40)

τ�
i,j(r, �) ) 〈ψi(r, �)|

∂

∂�
ψj(r, �)〉 (41)

τr
i,j(r, �) ≈ 1

2∆r
[〈ψi(r, �)|ψj(r + ∆r, �)〉 -

〈(ψi(r, �)|ψj(r - ∆r, �)〉] (42)

τ�
i,j(r, �) ≈ 1

2∆�
[〈ψi(r, �)|ψj(r, � + ∆�)〉 -

〈ψi(r, �)|ψj(r, � - ∆�〉] (43)
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For the other examples, r ) 0.8 and 1.2 Å, the signs of the
peaks (or the relative maxima) of the NACTs τ�

0,1 and τ�
1,2 are

also set to be positive, as for r ) 1.0 Å; compare parts b and
c of Figure 6 with part a, respectively. The consistency of this
assignment will be discussed in item xii. Thus, for r ) 0.8 Å,
Figure 6b shows a large positive peak of τ�

1,2 close to CI1
1,2 which

has been deduced from the near degeneracy of V1 and V2 close
to � ) 1.047 (60°), cf. Figure 5b. In contrast, the increase of
the energy gap between V1 and V0 which has been interpreted
as avoided crossing, suggesting that this is further away from
CI1

0,1(r ) 0.8, �), causes strong depletion of the corresponding
peak value of τ�

0,1; compare parts b and a of Figure 6. We
extrapolate a general trend from near degeneracies to avoided
crossings with increasing energy gaps between 1-d cuts of
the PES; these signatures of the CIs are located at increasing
distances from the corresponding CIs, causing systematic
decreases of the peak values of the correponding NACTs, in
accord with the pole property, eq 24. This conjecture is
confirmed by the results shown in Figures 5c and 6c for r )
1.2 Å: the previous near degeneracies (Figure 5a for r ) 1.0
Å) are transformed into avoided crossings, not only for V0

and V1 (as in Figure 5b) but even more drastically for V1

and V2. Figure 6c shows that, indeed, the peak value of τ�
0,1

at {r ) 1.2 Å, � ) π/2} is much smaller than at {r ) 1.0 Å,
� ) π/2}, Figure 6a. Moreover, the peak for τ�

1,2 which was so
obvious in Figure 5a and b has decayed to a marginal maximum
value which is hardly noticeable in Figure 6c.

Before moving on to the next items (v, etc.), we note that
close to the boundaries of Figure 6a-c, i.e., at � ) 0 and π/2,
some of the τ�

i,j have decayed to very small values, below the
accuracy of the quantum chemistry based method for calculating
the NACTs. In these cases, quantum chemistry per se is not
sufficient to determine the signs of the NACTs in these
neighborhoods and, therefore, also not in other connected
domains. The solution of this dilemma is postponed until item

xi, i.e., after conquering the molecular symmetry properties of
the NACTs and CIs.

(v-vii) It is now straightforward to solve the combined task
of the assignment of the IREPs of the NACTs of C5H4NH,
together with their nodal patterns, based on the general theorems
and properties which have been derived and summarized in
section II, in the frame of the molecular symmetry group C2V(M).
Let us first recall that two of these properties, i.e., the
quantization rule and the pole property, eqs 22 and 24, apply
for the model of two-state systems.1 The exclusive peaks of
the NACTs τ�

0,1({r ) 1.0 Å, �}) and τ�
1,2({r ) 1.0 Å, �}) in

narrow domains close to the CI1
0,1 and CI1

1,2 demonstrate the
approximate validity of the two-state scenario; i.e., there are
apparently no other CIs which interfere with CI1

0,1 or CI1
1,2 close

to [{r0,1, �0,1}]1 and [{r1,2, �1,2}]1, respectively, cf. Figure 6a.
This example for r ) 1.0 Å is sufficient for the derivation of
the IREPs of the NACTs, because these are global properties
of the MS group C2V(M) of C5H4NH; i.e., once they are
determined for the special case r ) 1.0 Å, they apply
automatically also to other values the MS-adapted coordinates.

Let us start from the discovery of the CI1
0,1 based on the LH

theorem ()S0/S1 CI (1A′/1A′′), item ii) at �0,1 ) π/2. This
location implies immediately that Γ(τ�

0,1) ) B1, cf. section II
(vii). We recall that the derivation of this result exploits the
quantization rule (22) and the pole property (24), in the frame
of the two-state model which is approximately valid as discussed
above. Moreover, the general theorem (15) immediately relates
the IREP B1 of τ�

0,1 to the IREPs of all of the other NACTs τk
0,1,

for the same states i, i + 1 ) 0, 1. Specifically, the radial NACT
has Γ(τr

0,1) ) B2, whereas the Cartesian ones (eq 5) have Γ(τx
0,1)

) A1 and Γ(τy
0,1) ) A2. Table 1 also lists the corresponding sign

patterns for the peaks of the NACTs, as well as their nodal
patterns. As an example, τ�

0,1({r,�}) should have opposite signs
of the peaks for � ) π/2 and -π/2, and corresponding nodes
at � ) 0 and (π.

Figure 6. Torsional nonadiabatic coupling terms (NACTs) of C5H4NH, τ�
0,1(r,�) (black continuous lines), τ�

1,2(r,�) (dashed lines), and τ�
0,2(r,�)

(gray continuous lines) in the domains 0 e � e π/2 (panels a-c) and -π e � e +π (panels d-f) for r ) 1.0 Å (panels a and d), r ) 0.8 Å (panels
b and e), and r ) 1.2 Å (panels c and f), in units of 1/radians. Note the different scales, i.e., on one hand, the “blown-up” panels a-c discover
details such as the crossing of τ�

0,1 and τ�
0,2 which cannot be resolved in panels d-f. On the other hand, the “global” panels d-f demonstrate the

patterns of the signs of the peaks of the NACTs, in accord with their irreducible representations in the frame of the “global” molecular symmetry
group C2V(M), i.e., B1 for τ�

0,1 and τ�
0,2 as well as B2 for τ�

1,2, c.f. Table 1.
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Next, we recall that the NACTs τ�
0,1(r ) 1.0, �) and

τ�
0,2(r ) 1.0 Å, �) interchange close to CI1

1,2 which is located at
[{r1,2 ≈ 1.0 Å, �1,2 ≈ 0.628(36°)}]1, cf. Figure 6a. The general
properties of the NACTs then imply that the IREPs of τ�

0,1 and
τ�

0,2 are the same, i.e., Γ(τ�
0,2) ) Γ(τ�

0,1) ) B1, cf. eqs 25-27.
Likewise, for each pair of the NACTs τk

0,2 and τk
0,1 with respect

to the other MS-adapted coordinates sk ) r, � or x, y, the IREPs
are also the same, c.f. theorem 15. As a consequence, the pairs
of NACTs τk

0,2 and τk
0,1 have the same nodal patterns; for

example, τ�
0,2 should have nodes at � ) 0 and at � ) (π, same

as for τ�
0,1, Vide infra.

Finally, we use the general theorem 17 which includes the
special case (19) to determine the IREP of the NACT which is
still “missing”, τ�

1,2. The result is Γ(τ�
1,2) ) A2; see the discussion

of eq 19 in section II. Using this as a reference, the IREPs of
τk

1,2 for the other MS-adapted coordinates sk are determined,
again using theorem 15. The results for the IREPs, the sign
patterns of the peaks, and the nodal patterns for all of the NACTs
τk

i,j, with respect to all coordinates k ) r, �, x, y and for the
three lowest electronic singlet states i ) 0, 1, j ) 1, 2, i < j are
listed in Table 1. For example, τ�

1,2 should have nodes not
only at � ) 0 and � ) (π but also at � ) (π/2. It is
impossible to deduce all of these nodal patterns, which are
a property of the MS symmetry of C5H4NH, from the
quantum chemistry results shown in Figure 6a-c. For
example, the values of NACTs τ�

0,1({r ) 1.0 Å, �}) close to
� ) π/2, i.e., far away from CI1

1,2, are compatible with a node
or with no node at π/2, because they are below the accuracy of
the method for calculating the NACTs.

(viii) The charges e1
0,1 and e1

1,2 of the “first” CI1
0,1 and CI1

1,2,
are calculated by means of planar contour integrals of the
tangential NACTs along loops around the CIs, cf. eq 22. We
assume that one can construct loops around the single CI1’s for
these contour integrals such that they consist of segments for
the torsional NACTs with large positive values close to the CI1’s,
as well as other segments for small values of NACTs far away
from the CI; see, e.g., loop L1 illustrated in Figure 2. Our
assignment of the positive sign for the angular NACTs τ�

0,1 and
τ�

1,2 with large absolute values close to the “first” CI1
0,1 and CI1

1,2

implies, therefore, by definition, that the charges e1
0,1 and e1

1,2 of
the “first” CI1’s are always equal to 1. This is also confirmed
by numerical calculation of the contour integrals for convenient
loops. For example, for CI1

0,1, we construct a loop which consists
of two half-circles (0 e � e π) with radii r ) 1.2 Å and r )
1.0 Å plus two connecting lines on the x-axis, from x ) -1.2
Å until - 1.0 Å and from x ) 1.0 until 1.2 Å; the value of the
corresponding contour integral agrees with +π within numerical
accuracy; i.e., the charge of CI1

0,1 is e1
0,1 ) 1.

(ix) The assignment of the IREPs of the sets of MS-adapted
CIg

0,1 (g ) 1, 2) and CIg
1,2 (g ) 1, 2, 3, 4) depends on their

charges eg
0,1 and eg

1,2, respectively. The latter are determined
by the signs of contour integrals of the tangential NACTs
along suitable loops which surround these CIs. The procedure
has been illustrated for two examples, cf. section II, item ix.
For the present system C5H4NH, CI1

0,1 has been located at
[{r0,1 ≈ 1.0 Å, � ) π/2}]1, using the LH theorem (cf. items
ii and iii); this is the scenario of the first example. Hence, we
can adapt the results of section II, item ix. Accordingly, CI1

0,1

and CI2
0,1 have opposite charges e2

0,1 ) -e1
0,1 ) -1, with

corresponding IREP B1, the same as for τ�
0,1.

Now let us apply the analogous procedure to determine the
IREP of CIg

1,2; accordingly, we construct a loop (similar to L4

in Figure 2c) around CI1
1,2 as well as the MS-adapted loops

around the other CIg
1,2, g ) 2, 3, 4. The IREPs A2 of CI�

1,2 and

A1 of τr
1,2, with corresponding patterns of the signs, as illustrated

in Table 1, then yield alternating signs of the contour integrals,
hence alternating charges e1

1,2 ) -e2
1,2 ) e3

1,2 ) -e4
1,2, identical

to the sign patterns of τ�
1,2, cf. Table 1. As a consequence, the

IREP of CI1,2 is A2, again the same as for τ�
1,2.

(x) In section II, item x, we have shown that, if the first
CI1

i,i+1 between adiabatic PES Vi and Vi+1 is located at
[{ri,i+1, �i,i+1 ) π/2}]1, then the entire seam of CIi,i+1 in the
(r, �)-plane is restricted to � ) π/2 or -π/2, for CI1

i,i+1 and
CI2

i,i+1, respectively. The location of CI1
0,1 between the electronic

ground and first excited states at [{r0,1 ≈ 1.0 Å, �0,1 ) π/2}]1

by means of the LH theorem fulfills this condition; hence, we
conclude that the signatures of the 3N-8 dimensional seam of
CI0,1 in the (r, �)-plane is restricted to two points corresponding
to perpendicular geometries of C5H4NH, � ) π/2 or -π/2. In
contrast, the seam of CI1,2 with CI1

1,2 * (π/2 in the (r, �)-
plane is not restricted to +π/2 and -π/2, see Figures 5a, 5b.

Our quantum chemistry results confirm these different topolo-
gies of the seams of CI0,1 and CI1,2. First, we carried out a
systematic search for any exceptions in the (r, �)-plane, but
we could not discover any degeneracies or near degeneracies
of V0 and V1 for any geometries of C5H4NH other than the
perpendicular one, �0 ) +π/2 or -π/2. Second, the results
shown in Figure 6a and b already suggest that the seam of CI1

1,2

exists for two values of �1,2 ≈ 0.628(36°) and 1.047(60°), for
r1,2 ≈ 1.0 and 0.8 Å, respectively. By extrapolation, one can
also determine (near) degeneracies of V1 and V2 for arbitrary
fixed values �1,2, by systematic variations of r; i.e., the seam
of CI1,2 appears as a line in the (r, �)-plane. The seam of CI1,2

in the domain 0 < � e π/2 can be extended to the full cycle,
-π e � e π, using the MS operations (12), E*, and (12)*, cf.
Figure 1. Further investigations of the seams of the CIs will be
published elsewhere; see also the discussion in refs 43, 44.

(xi) We are now ready to construct the NACTs τ�
i,j(r, �) (and

similarly the τk
i,j(r,�) for the other MS-adapted coordinates sk

() r, x, y)) in the global domain -π e � e π, by combining
the results for the IREPs of the NACTs with the quantum
chemistry results for the restricted, albeit representative domain
0 e � e π/2 which have been documented in Figure 6a-c.
This task requires two steps. First, we apply the symmetry
operations (12), E*, and (12)* (Figure 1) to generate the same
absolute values of the NACTs at the MS-adapted coordinates
(13). Second, the signs of the NACTs are determined according
to their IREPs, as shown in Table 1. Note that this procedure
applies for all radii r, because the IREPs of the NACTs are a
global property of the MS C2V(M) of C5H4NH; i.e., they are
not restricted to any special value of r (irrespective of the fact
that a special value, r ) 1.0 Å, was used to locate the first
CI1

0,1, using the LH theorem, cf. item ii). The results, i.e.,
τ�

i,j(r, �) for i ) 0, 1, j ) 1, 2, i < j in the domain -π e � e
π are shown in Figures 6d, e, and f for r ) 1.0, 0.8, and 1.2 Å,
respectively. The first step, i.e., determination of the absolute
values, is based on quantum chemistry per se. In contrast,
quantum chemistry cannot determine the signs of the NACTs
beyond the boundaries of the representative domain, 0 e � e
π/2, if the absolute values of the NACTs at the boundaries are
below the intrinsic accuracy of the method. This dilemma is
solved by combining the quantum chemistry results with the
results for the IREPs of the NACTs.

(xii) Finally, we present several tests of self-consistency for
the results which have been achieved in items i-xi.

First, we recall that the value of the contour integral for the
loop which consists of two half circles with radii r ) 1.2 and
1.0 Å, plus two connecting segments on the x-axis, around CI1

0,1
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(as explained above) is equal to π, allowing the assignment of
its charge e1

0,1 ) 1, within numerical accuracy; this is in accord
with eq 22. Likewise, the value of the analogous contour integral
for the loop with corresponding radial parameters r ) 1.0 and
0.8 Å, which does not include CI1

0,1, is equal to zero, in accord
with eq 23. These results confirm the self-consistency of the
assignments of the same, positive signs of the values of the
peaks of the τ0,1({� ) π/2, r}) for the three cases, r ) 1.0, 0.8,
and 1.2 Å, cf. Figure 6a-c.

Second, theorem 15 relates the IREPs of the torsional NACTs
τ�

i,j to the IREPs of all other τk
i,j; see also Table 1. Accordingly,

the IREPs of the radial NACTs τr
0,1, τr

0,2, and τr
1,2 should be B2,

B2, and A1, implying nodes for τr
0,1({r, �}) and τr

0,2({r, �}) at �
) π/2 but no node for τr

1,2({r, �}). Quantum chemical
calculations of the radial NACTs confirm this symmetry
property of the radial NACTs, as demonstrated in
Figure 7.

The third test of the self-consistency of the IREPs of the
torsional NACTs τ�

i,j is provided by the quantization rule for
the so-called N × N topological matrix D(r) which depends on
the NACTs. Specifically, D(r) is defined in terms of the N × N
adiabatic-to-diabatic transformation (ADT) matrix, also called
the A matrix (see ref 1, Chapter 4, and refs 37 and 38)

where τ� is the antisymmetric N × N nonadiabatic coupling
matrix with elements τ�

i,j, i, j ) 0, ... , N - 1, and P is the
ordering operator. In the applications below, we consider the
states S0, S1, and S2, thus, N ) 3; the starting point is �0 ) -π,
and the A matrix at the starting point is defined as the unity
matrix, for convenience. Integration along a circular closed loop
L(r) with radius r, i.e., from �0 to �0 + 2π, yields the topological
matrix D(r)13,28

It can be shown that D(r) is diagonal if the N states form a
quasi-Hilbert subspace in the region surrounded by L(r).
Furthermore, D is by construction an orthogonal matrix. Since
it is diagonal and orthogonal, its diagonal elements are equal
either to +1 or to -1. Moreover, it can be shown that the
number of (-1)’s has to be even (ref 1, lemma 5.3 on p 119).
We note in passing that the A matrix is called the ADT matrix
because it may be used to transform the diagonal matrix
V(r, �) for the adiabatic PES, V(r, �)i,j ) Vj(r, �)δi,j, into the
diabatic potential matrix

Since A(r, �) is defined for torsional contours, W(r, �) is also
defined for these contours. The quantization rule for the
topological matrix guarantees that, in the limit of the closed
circular contour, the diabatic matrix elements are single-valued,
W(r, �) ) W(r, � + 2π). Applications of the diabatic potentials
based on the NACTs with proper IREPs for the MS C2V(v) to
quantum dynamics simulations of photoexcited C5H4NH will
be presented elsewhere.

This quantization rule of the D matrix is a very sensitive test
for the quantum chemical calculations of the NACTs in the

representative domain 0 e � e π/2 (Figure 6a-c), as well as
for the extensions to the global domain -π e � e π based on
their IREPs (Figure 6d-f): Any quantum chemical calculation
of the NACTs and assignment of their IREPs that does not lead
to a diagonal D matrix with an even number of (-1)’s can be
ruled out.

Applications of the third self-consistency test for the NACTs
and their IREPs are demonstrated in Figure 8. Specifically,
Figure 8a-c, d-f, and g-i show the elements of the A(r, �)
matrix for r ) 1.0, 0.8, and 1.2 Å, based on the NACTs τ�

i,j

shown in Figure 6d, e, and f, respectively, in the domain -π e
� e +π. In the limit � f π, the ADT matrix approaches the
topological matrix D(r). It is gratifying that the numerical values
of D(r) satisfy the quantization rule perfectly.

A(r; �) ) P exp[-∫�0

�
d�τ�(r; �)]A(r; �0) (44)

D(r) ) A(r, 2π) ) P exp[-∫�0

�0+2π
d�τ�(r; �)]A(r; �0)

(45)

W(r, �) ) A(r, �)†V(r, �)A(r, �) (46)

Figure 7. Quantum chemistry results for the nodal properties of
the radial nonadiabatic coupling elements (NACTs) of C5H4NH, τr

0,1

(a), τr
1,2 (b), and τr

0,2 (c), in a narrow domain close to π/2. Note the
different scales. These results are consistent with their irreducible
representations B2, A1, and B2, respectively, as deduced by the
theorem 15 for the NACTs in the frame of the molecular symmetry
group C2V(M), cf. Table 1.
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IV. Conclusions

This paper combines two fields of research: Quantum
chemistry beyond Born-Oppenheimer,1 and the theory of the
molecular symmetry groups,8 to the benefit of our understanding
of the conical intersections CIs and the nonadiabatic coupling
terms NACTs which mediate transitions between different
nonadiabatic potential energy surfaces PES in molecules.
Quantum chemistry has been developed as a method to
determine the electronic structures of a molecule, depending
on the positions of the nuclei in “local” environments, e.g., at
or near stationary points of the potential energy surfaces PES
such as potential minima or transition states. As a consequence,
the results of quantum chemistry calculations, in particular the
electronic states, have been classified traditionally according to
the irreducible representations IREPs of the molecular point
groups for the given local environment. The present work
provides an extension of these symmetry assignments, from the
IREPs for “local” molecular point groups to the “global”
molecular symmetry MS group. This opens the door to
investigationsofmolecularproperties“beyondBorn-Oppenheimer”
in global molecular domains, e.g., mediated by large amplitude
motions, such as isomerizations or torsions.

As a result of our investigation, we could discover several
important properties of the CIs and the related NACTs with
respect to molecular-symmetry-adapted coordinates. For ex-
ample, if quantum chemistry calculations of the adiabatic

potential energy surfaces Vi(s) and Vi+1(s) have localized the
first CI1

i,i+1 between these PES at s ) s1
i,i+1, then one can apply

the symmetry operations Ŝg, g ) 1, 2, ... , G of the MS in order
to generate a complete set of MS-adapted CIg

i,i+1 at different
locations sg

i,i+1 ) Ŝgs1
i,i+1.

The main effort of this paper has been for the determination
of the irreducible representations IREPs of the NACTs and the
CIs. For this purpose, we have derived the general theorems
15 and 17. Together with known properties of the NACTs
related to the CIs,1 in particular the quantization rule (22), the
pole property (24), and in addition also the switching property
(25), these theorems allow one to determine the IREPs of the
NACTs and CIs, in the frame of the MS group. These IREPs
imply several “global” properties, such as the patterns of the
signs of the peak values of the NACTs close to the set of MS-
adapted CIs, the nodal patterns of the NACTs, the signs or
charges of the MS-adapted sets of CIs, and different topologies
of the seams of the CIs in specific planes of MS-adapted
coordinates depending on their IREPs. These “global” properties
can in general not be derived by means of pure quantum
chemistry; they are a result of its combination with the “global”
MS group. For example, quantum chemistry can provide the
same absolute values of the NACTs close to several symmetry-
adapted potential minima supporting different isomers; the signs
of these NACTs depend on their IREPs which are derived in
this paper, in the frame of the MS group. Also, the “global”

Figure 8. Elements of the A-matrices of C5H4NH as a function of � for r ) 1.0 Å (panels a-c), r ) 0.8 Å (panels d-f), and r ) 1.2 Å (panels
g-i). Panels a, d, and g show the diagonal elements A00 (solid black lines), A11 (gray lines), and A22 (dashed lines). Panels b, e, and h and c, f, and
i show the off-diagonal elements A01 (solid black lines), A02 (gray lines), and A12 (dashed lines) and A10 (solid black lines), A20 (gray lines), and A21

(dashed lines), respectively.
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MS property of the IREPs, together with theorem 15, implies
that, in practice, it suffices to determine the IREPs of the NACT
τk

i,j(s) with respect to a single symmetry-adapted coordinate sk;
this implies the IREPs of all other τl

i,j(s), for all coordinates s.
The general theory and the resulting recipes for constructions

of the NACTs and CIs with the proper IREPs in global domains,
e.g., for torsional motions from the molecular syn to the anti
isomer, have been demonstrated in detail for the simple model
C5H4NH which has MS symmetry C2V(M). The step-by-step
approach should serve as an example for extended applications
to more demanding systems. The results are summarized in
Table 1 as well as several figures. Some of the underlying tools
which have been developed or integrated in the individual steps
appear to be quite powerful. For example, the localization of
the “first” CI1

0,1 at the perpendicular geometry (�0,1 ) π/2) has
been achieved by means of the method based on the Longuet-
Higgins theorem.33 This requires nothing but quantum chemistry
calculations of four “anchors” (the potential minima and two
transition states) of C5H4NH in the electronic ground state S0.
Nevertheless, this rather restricted “input” from quantum
chemistry, combined with the general results for the MS group,
suffices in order to determine the global IREPs of all of the
NACTs τk

0,1 for the couplings of the PES of the electronic ground
state V0 and the excited state V1, including all of the MS
properties such as the nodal patterns and the signs of the NACTs
or the opposite charges of the MS-adapted set of the two CI1

0,1

and CI2
0,1, and even the fact that the seam of CI0,1 in the

(r, �)-plane is restricted to the orthogonal geometry, without
any neccessity of calculating V1 or the τk

0,1 explicitly!
These and other, rather rich results for all of the NACTs and

the CIs of the three lowest electronic singlet states S1, S1, and
S2 of C5H4NH have been confirmed by various tests for self-
consistency. In particlar, we have calculated the A matrices for
adiabatic-to-diabatic transformation, based on the MS-adapted
NACTs, along different paths for molecular torsion. In the limit
of torsion by 2π (360°), the A matrices approach the so-called
topological matrices D which have to satisfy simple but
mandatory quantization rules; i.e., they must be diagonal, with
diagonal elements equal to 1 or -1 where the number of -1’s
must be even.1 We consider the successful computational tests
of this demanding rule as rewarding. Turning the table, the self-
consistency tests could also be employed as alternative criteria
for the determination of the IREPs; e.g., we could have used
the information for the nodal patterns of the radial NACTs
(Figure 7) instead of the switching property (Figure 6a); see
the discusions in section III.

The present combination of quantum chemistry beyond
Born-Oppenheimer and the molecular symmetry group suggests
several extensions. First, the two fields should be combined with
a third one, i.e., quantum reaction dynamics. The solutions of
the corresponding time dependent Schrödinger equation, i.e.,
the representative wavepackets which are propagated on several
coupled PES, depend on the couplings of the PES, i.e., on the
NACTs. As a working hypothesis, these results should depend
on the IREPs of the NACTs, in the frame of the MS group, if
the wavepackets evolve from one molecular domain to different
MS-adapted ones, e.g., due to large amplitude motions such as
torsion or isomerization. For reference, effects of the MS group
on the quantum reaction dynamics have been demonstrated
previously, e.g., for laser separation of nuclear spin isomers,45,46

but so far without explicit consideration of MS effects on the
NACTs. Concerning the methodology, these quantum simulations
should be carried out using the so-called diabatic representation,
which is much more convenient than the adiabatic one.1,2,28 It is

gratifying that the present approach already provides the A matrix
for the underlying adiabatic-to-diabatic transformation of the PES,
based on the NACTs with proper IREPs. Second, we have
implicitly assumed that the molecule is in the rotational ground
state; this allowed us to use the MS-adapted torsional angle � which
describes the rotation of the light hydrogen atom of the NH bond
relative to the heavy C5H4N fragment. For more general scenarios,
the present approach should be extended to the theory of double
groups.47,48 Last but not least, it is a challenge to extend the present
development to additional MS-adapted coordinates, and to mol-
ecules with more demanding MS groups, including groups with
larger orders, and also with two- or more-dimensional IREPs; there
are actually many systems in the literature which call for such
extended investigations; see, e.g., refs 49 and 50. Work along these
lines is in progress.
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Appendix

This Appendix considers the second example of section II,
items vii and viii, in terms of symmetry-adapted Cartesian
coordinates s ){x, y}, complementary to cylindrical coordinates
s ) {r, �}. The scenario assumes that the first CI1

i,i+1 has been
discovered at [si,i+1]1 ) [{xi,i+1, yi,i+1}]1 ) {x, 0}. Application
of the molecular symmetry operator (12)* generates the second
CI2

i,i+1 at [{x, y ) 0}]2 ){-x, 0}; see Figure 9. Here, we present
a “shortcut” derivation of the opposite charges of CI1

i,i+1 and
CI2

i,i+1, implying the IREP B2 of CIi,i+1, in accord with Table 1.
For convenience, we use a simplified notation, by dropping
many sub- or superscripts which the reader could add in accord
with the rest of the paper.

A. Two (Symmetric) Two-State Conical Intersections in
a Plane. We consider two two-state conical intersections, C1

and C2, located in a plane (see Figure 9). In addition, we
distinguish between three regions: ΛI, ΛII, and Λ0. Here, ΛI is
defined in terms of the closed contour LI and contains the conical
intersection C1, ΛII is defined in terms of the closed contour LII

and contains the conical intersection C2, and Λ0 is defined in
terms of the closed contour L0 and does not contain any ci. Next,
for the sake of convenience, we assume all three contours to be
rectangles. Consequently, we employ Cartesian coordinates: x
and y (see Figure 9). Please note that the y-axis is defined along
the line of symmetry. In what follows, we consider the two-
state case and consequently concentrate on the following line

Figure 9. Two molecular-symmetry-adapted conical intersections C1

and C2 with the domains ΛI and ΛII encircled by closed loops LI and
LII (continuous lines), respectively. The central domain Λ0 surrounded
by loop L0 (dashed line) does not contain any CI. The arrows indicate
the directions of integration for the corresponding contour integrals
which are used to determine the charges of the conical intersections;
see text.
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integrals to calculate the corresponding topological (Berry) phase
R(L):

Here, τ(s|L) in eq 47a stands for the (1, 2) vectorial nonadiabatic
coupling term (NACT) (the dot presents a scalar product) and
τs(s|L) in eq 47b stands for the corresponding tangential
component of τ(s|L):

and ds is an infinitesimal (scalar) distance along the contour.
In the case of Cartesian coordinates s presents x and y. In what
follows, we concentrate on eq 47b. Next, we make a few
comments:

(a) Any line integral of the type given in eq 47, calculated
along a closed contour that surrounds only one single ci, yields

It is noticed that the value of the line integral is determined up
to a sign.

(b) To treat the sign ambiguity in a more efficient way, it is
suggested to extend eq 47b in the following way:

so that the sign of the integrand along the contour L is determined
by e(s), where e(s) is a function of s which is allowed to have two
values only, namely, e(s) )(1. It is positive when τs(s|L) > 0 and
negative when τs(s|L) < 0 (thus e(s) is a step function).

(c) The introduction of e(s) is particularly convenient when
the contour L is close enough to a given ci, e.g., Cj. It is well-
known that in such a case τs(s|Lj) does not flip signs along the
contour and therefore e(s) keeps its sign constant along the
whole contour so that:

with j ) 1, 2. Equation 51 is an extension of eq 49.
(d) Any line integral of the type in eq 47 calculated for a

closed contour that does not surround any conical intersection
is zero (this follows from the existence of the two-state curl
equation at each point in such a region; see, for instance, Chapter
1.3.2.2 in ref 1). From Figure 9, it can be seen that L0 is such
a (closed) contour and the corresponding line integral to be
considered is

B. Computation Applying Cartesian Coordinates. In what
follows, we expand the line integrals in eqs 50, 51, and 52
employing Cartesian coordinates. Thus, any of the closed L
contours (see Figure 9) are defined in terms of two horizontal

lines y ) y1, y2 and two perpendicular lines x ) x1, x2 and
consequently four (corner) points:

where the last point is identical to the first. As for τ(x,y|L), its
two (planar) Cartesian components are (τx, τy). To continue, we
consider the rhs line integral in eq 51 (namely, the line integral
that surrounds C1, see Figure 9):

A similar result can be obtained for R(LII). To simplify the
treatment, we assume that τx ∼ 0 (this is achieved if we let yi

f -∞ and yf f +∞, and consequently the respective two
x-components of τ become zero). Consequently, we are left with
two terms in eq 54:

and a similar expression for R(LII). Next are introduced the
following definitions (see Figure 9):

with two additional comments:
(i) Since all of the τy’s are calculated along segments close

to one of the cis, their values are always positive.
(ii) Although eq 56 presents four different line integrals, namely,

τ(a), τ(b), τ̃(a), and τ̃(b), we have, due to symmetry (see Figure 9),
two identical pairs, namely, τ(a) ) τ̃(a) and τ(b) ) τ̃(b).

Next, we evaluate eq 55 for the two relevant rectangles ΛI

and ΛII:
(I) For ΛI, we have

This result follows from the fact that both segments x ) xi and
x ) xf are close enough to C1 (see also eq 51 for j ) 1).

(II) For ΛII, we have (a similar result):

This result follows from the fact that both segments x ) -xi

and x ) -xf are close enough to C2 (see also eq 51 for j ) 2).
(III) For Λ0, the situation is somewhat more complicated. Em-

ploying, again, the Cartesian coordinates, recalling that all τx ∼ 0
and that the τy’s do not flip signs along x ) xf, -xf, we get that

R(L) ) {IL τ(s|L) ·ds (47a)

IL τs(s|L) ds (47b)
(47)

τs(s|L) ) 〈ψi|
∂

∂s
ψi+1〉 (48)

R(L) ) (π (49)

R(L) ) IL e(s)|τs(s|L)| ds (50)

Rj(Lj) ) ILj
e(s)|τs(s|Lj)| ds ) ejILj

τs(s|Lj) ds ) ejπ
(51)

R0(L0) ) IL0
e(s)|τs(s|L0)| ds ) 0 (52)

(x1, y1) f (x1, y2) f (x2, y2) f (x2, y1) f (x1, y1)
(53)

R(L1) ) e1{∫yi

yf dy'τy(xi, y') + ∫xi

xf dx'τx(x', yf) +

∫yf

yi dy'τy(xf, y') + ∫xi

xf dx'τx(x', yi)} (54)

R(L1) ) e1{∫yi

yf dy'τy(xi, y') + ∫yf

yi dy'τy(xf, y')} (55)

τ(a) ) ∫yi

yf dy'τy(xi, y')

τ(b) ) ∫yf

yi dy'τy(xf, y')

τ̃(b) ) ∫yi

yf dy'τy(-xf, y')

τ̃(a) ) ∫yf

yi dy'τy(-xi, y')

(56)

R(LI) ) e1(τ
(a) + τ(b)) ) e1π (57)

R(LII) ) e2(τ̃
(a) + τ̃(b)) ≡ e2(τ

(a) + τ(b)) ) e2π (58)
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Next, since the segment x ) +xf is close to C1 and the segment x
)-xf is close to C2, we get that e(xf, y) ∼ e1 (for any y-value) and
e(-xf, y) ∼ e2, so that eq 59 becomes

The only way eq 60 can yield the value of zero is to require
that e2 ) -e1. This outcome implies that the two cis, namely,
C1 and C2, are formed by two identical NACTs but with
opposite signs (charges). If the two corresponding NACTs
are characterized by two well-defined pronounced peaks, this
result implies that the two peaks are of opposite signs. A
byproduct of this proof is that

See eqs 57 and 58.
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Amaran, S.; Kumar, S.; Köppel, H. J. Chem. Phys. 2008, 128, 124305. (c)
Gomez-Carrasco, S.; Aquado, A.; Paniaqua, M.; Roncero, O. J. Chem. Phys.
2006, 125, 104105.

(22) (a) Hu, C.; Hirai, H.; Sugino, O. J. Chem. Phys. 2008, 128, 144111.
(b) Hu, C.; Hirai, H.; Sugino, O. J. Chem. Phys. 2007, 127, 064103.

(23) (a) Gadea, X.; Pellisier, M. J. Chem. Phys. 1990, 93, 545. (b)
Romero, T.; Aguilar, A.; Gedea, X. J. Chem. Phys. 1999, 110, 6219. (c)
Mozhayskiv, V. A.; Babikov, D.; Krylov, A. I. J. Chem. Phys. 2006, 124,
224309.

(24) (a) Abrahamsson, E.; Groenenboom, G. C.; Krems, R. V. J. Chem.
Phys. 2007, 126, 184309. (b) Rozgonyi, T.; González, L. J. Phys. Chem. A
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