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We explore the possibility of controlling rotational-torsional dynamics of non-rigid molecules with
strong, non-resonant laser pulses and demonstrate that transient, laser-induced torsional alignment
depends on the nuclear spin of the molecule. Consequently, nuclear spin isomers can be manipulated
selectively by a sequence of time-delayed laser pulses. We show that two pulses with different po-
larization directions can induce either overall rotation or internal torsion, depending on the nuclear
spin. Nuclear spin selective control of the angular momentum distribution may open new ways to
separate and explore nuclear spin isomers of polyatomic molecules. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3687343]

I. INTRODUCTION

The rotations of molecules can be effectively controlled
by moderately intense laser pulses, employing interaction
of the field with the permanent or the induced dipole of the
molecule. Molecular alignment, in particular, has been stud-
ied intensively during the past few years due to its numerous
applications, ranging from chemical reaction dynamics to
high harmonic generation. If the laser field is turned on and off
adiabatically, the alignment disappears once the field is turned
off. Field-free alignment can be created with short laser pulses
(short with respect to the molecular rotational periods).1 Here,
the laser pulse excites rotationally broad wavepackets, where
the phase relations among the rotational components guaran-
tee that the molecule will align with the polarization vector(s)
after the end of the pulse, subsequently exhibiting (coherent)
dephasing, due to the unequal rotational level spacings. As a
result of the phenomenon of quantum revivals, the early time
alignment is fully or partially reconstructed after turn-off of
the pulse, under field-free conditions. In the case of linear and
symmetric top molecules, the initial alignment is precisely
reproduced periodically in time, as long as coherence is
maintained. The application of a pair of pulses to induce
unidirectional rotation about a molecular axis has been also
demonstrated, both theoretically2–5 and experimentally.2, 3, 6

The ability to control molecular alignment can be em-
ployed to selectively manipulate chemically close species. An
example is nuclear spin modifications: molecules with iden-
tical nuclei can occur in the form of nuclear spin isomers,
differing by the symmetry of their nuclear spin states. The
most familiar example of nuclear spin isomers is para- and
ortho-hydrogen,7 but also polyatomic molecules can have dif-
ferent nuclear spin modifications. Here, the separation and
conversion of the isomers is still a challenge and has been
performed for only few species.8–10 The symmetrization pos-
tulate, or Pauli’s principle, implies that the symmetry of the

a)Author to whom correspondence should be addressed. Electronic mail:
monika.leibscher@chemie.fu-berlin.de.

nuclear spin determines the symmetry of the spatial molecular
wavefunction, in particular rotational and torsional wavefunc-
tions. Rotational dynamics thus depend on the nuclear spin
of the molecules; it has been observed that at specific times
after the alignment pulse the molecules belonging to one iso-
mer are aligned along the polarization direction of the field,
while the molecules belonging to the second isomer are anti-
aligned.11 These differences in the rotational dynamics can
be used to selectively manipulate the nuclear spin isomers by
subsequent, properly time-delayed, laser pulses.11–13 In poly-
atomic molecules, more than two nuclear spin isomers can
exist. In Ref. 14, it is shown that the four nuclear spin isomers
of ethylene can all be distinguished by their rotational dynam-
ics. Controlling molecular alignment thus offers a new route
for the separation of nuclear spin isomers.

Moderately intense laser pulses, which have proven pow-
erful in steering rotational dynamics, can also be applied
to control internal dynamics in molecules. The branching
ratio of photo-dissociation in IBr has been controlled by
strong non-resonant laser pulses,15 and the use of Stark
shifts to control radiation-less decay through conical intersec-
tions was proposed.16 The application of moderately intense
laser pulses to control internal torsion has been proposed in
Ref. 17 and realized experimentally in Refs. 18 and 19.
Numerous applications of controlling torsional dynamics by
strong laser fields are discussed in Refs. 17 and 20, ranging
from control of charge transfer reactions and purification of
thermal racemates, to field guided molecular assembly and
optical control of electron dynamics in molecular junctions.20

In this study, we investigate nuclear spin selective ef-
fects of laser controlled torsion. It has been shown previously
that photo-induced intramolecular torsion can be nuclear spin
selective.21, 22 Here, we propose a simple model for the de-
scription of intra-molecular torsion in the electronic ground
state, induced by non-resonant laser pulses, and investigate
the prospects of inducing torsional alignment (Sec. II). We
then demonstrate that transient molecular torsion is sensitive
to the nuclear spin of the molecules (Sec. III). In Sec. IV, we
show that nuclear spin selective uni-directional rotation and

0021-9606/2012/136(8)/084309/11/$30.00 © 2012 American Institute of Physics136, 084309-1
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FIG. 1. (a) Torsional alignment: A first pulse aligns the major molecular axis
along the space-fixed z axis. A second, short pulse, polarized perpendicular
to the z axis, induces intra-molecular torsion. (b) Coordinate system using
diboron tetrafluoride as an example.

torsion can be excited by a sequence of laser pulses and in
Sec. V we conclude, with a discussion of the prospects for
nuclear spin selective manipulation of non-rigid molecules.

II. TORSIONAL ALIGNMENT OF NON-RIGID
MOLECULES

In order to investigate how intra-molecular torsion is in-
fluenced by strong, non-resonant laser pulses, we consider
molecules where two parts of the system can rotate against
each other because they posses a low torsional barrier. Ex-
amples are biphenyls17–19 or molecules such as B2F4 or
B2Cl4.24–26 We envision a two-pulse scenario, where a first
linearly polarized pulse aligns the major molecular axis and a
second pulse, linearly polarized perpendicular to the first one,
excites intra-molecular torsion as well as rotation perpendic-
ular to the molecular axis (see Fig. 1). Here, we assume that
the molecules are already (perfectly) aligned along the space-
fixed z axis and investigate the effects of a short x-polarized
laser pulse. (A similar model has been employed in Ref. 19.)
The rotation of the two parts of the molecule can then be ex-
pressed by the Hamiltonian

Ĥmol = − �
2

2I1

∂2

∂χ2
1

− �
2

2I2

∂2

∂χ2
2

+ V (χ1 − χ2), (1)

where I1 and I2 are the moments of inertia and χ1 and χ2 are
the rotational angles of the individual parts of the molecules,
as defined in Fig. 1. The torsional potential is denoted by V(χ1

− χ2). If the two parts of the molecule have the same mo-
ments of inertia I1 = I2 = I, one can introduce the torsion
angle β = χ1 − χ2 and the rotation angle χ = (χ1 + χ2)/2
to separate the Hamiltonian into a rotational and a torsional
part,17, 23

Ĥmol = Ĥrot + Ĥtor = − �
2

2Itot

∂2

∂χ2
− �

2

2Ired

∂2

∂β2
+ V (β)

(2)
with Itot = 2I being the total moment of inertia and with
Ired = I/2 being the reduced moment of inertia. In the fol-
lowing, we will use the dimensionless parameters E′ = E/Etor

with Etor = �
2/Ired for the energy and τ = t/t0, with

t0 = Ired/� for the time. For B2F4, for example, Etor = 1.69
× 10−4 eV and t0 = 12.2 ps. The eigenfunctions φrot

k (χ ) of the
rotational Hamiltonian are plane waves with the correspond-
ing eigenvalues Erot

k = 1
2

Ired

Itot
k2 = k2

8 . For the torsional part of
the Hamiltonian, we assume a simple periodic model for the

potential

V = V0

2
cos(2β) + |V0|

2
, (3)

where |V0| is the barrier height. A barrier with V0 > 0 cor-
responds to a potential with a maximum at β = 0 and a
minimum at β = π /2 , i.e., the molecule is twisted in its
equilibrium configuration (such as B2Cl4); V0 < 0, on the
other hand, has a minimum at β = 0 and, therefore, describes
molecules which have a planar equilibrium structure, such
as B2F4. The eigenfunctions φtor

n (β) of the torsional Hamil-
tonian are the Mathieu functions,27, 28 and the energy eigen-
values Etor

n = (an(V0) + |V0|)/2 are the scaled characteristic
values of the Mathieu functions.

In order to model the interaction between a laser pulse
and the molecules, it is assumed that both parts of the
molecule will interact independently with the laser field. This
assumption is valid if the interaction between the two parts is
small.17, 29 The interaction with the field can then be written
as

Ĥint = Ĥ
(1)
int + Ĥ

(2)
int (4)

with1

Ĥ
(j )
int = −ε2(τ )

4

	αj

Etor

cos2 χj + Cj (5)

and j = 1, 2, where ε2(τ ) is the envelope of the laser pulse,
	αj = α

(j )
xx − α

(j )
yy is the polarizability anisotropy, and Cj is a

constant which can and will be neglected in the following. For
molecules having two identical parts, 	α1 = 	α2 = 	α, the
interaction Hamiltonian can be written as

Ĥint = −ε2(τ )

4

	α

Etor

[1 − cos β + 2 cos β cos2 χ ] . (6)

If the pulse is sufficiently short that the molecules do not ro-
tate during the interaction, the total wavefunction after the in-
teraction can be written as30

|�(0+)〉 = eiP (1−cos β+2 cos β cos2 χ)|�(0)〉 , (7)

where

P = 1

4

	α

Etor

∫
ε2(τ )dτ (8)

is the effective interaction strength and |�(0)〉 is the wave-
function before the interaction. If the molecule is initially in
its ground rotational and torsional state

|�(0)〉 = ∣∣φtor
0

〉∣∣φrot
0

〉
, (9)

the wavefunction at the end of the pulse is expanded in a basis
of eigenfunctions of the molecular Hamiltonian of Eq. (2) as

|�(0+)〉 =
∞∑

n=0

∞∑
k=−∞

cn,k

∣∣φtor
n

〉∣∣φrot
k

〉
. (10)

After the interaction the system evolves freely and

|�(τ )〉 =
∞∑

n=0

∞∑
k=−∞

cn,ke
−iEn,kτ

∣∣φtor
n

〉∣∣φrot
k

〉
, (11)
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FIG. 2. Excited torsional (n) and rotational (k) eigenstates after interac-
tion with a short laser pulse. The absolute square |cn, k|2 of the expansion
coefficients is shown, where the diameter of the circles is proportional to
|cn, k|2. The effective interaction strength is P = 10. Panel (a): initially twisted
molecule (V0 = 10), panel (b): no torsional potential (V0 = 0), panel (c): ini-
tially planar molecule (V0 = −10). Here, V0 is given in units of Etor.

where the energy eigenvalues of the field-free system are
given by En,k = Etor

n + Erot
k . For a molecule which is initially

in its ground rotational and torsional state, the coefficients cn, k

can be written as

cn,2k = ik exp(iP )
∫ 2π

0
dβ φtor ∗

n (β)φtor
0 (β)Jk(P cos β)

(12)
and

cn,2k+1 = 0, (13)

where Jk is a Bessel function of kth order. Figure 2 shows the
distribution of rotational and torsional states that are excited
by a short laser pulse with an effective interaction strength P
= 10. In panel (a), the potential barrier is V0 = 10, i.e., the po-
tential minima are at β = π /2 and β = 3π /2 and the molecule
is initially twisted. In this case, the laser pulse mainly excites
torsional states and overall rotation is hindered by the twisted
geometry. A potential barrier of V0 = −10 (panel (c)) cor-
responds to an initially planar molecule. Here, mainly rota-
tional states are excited; since both rotors are affected by the
interaction in the same way, basically no internal torsion is
induced. An intermediate case is shown in panel (b), where
V0 = 0. For systems that exhibit negligible torsional barrier,
the torsional motion is initially isotropic. As a consequence,
both torsional and rotational states are excited by the laser
pulse.

The subsequent rotational-torsional dynamics can be
quantified in terms of similar expectation values to those
used in the past in the context of alignment1 and torsional
alignment.17 Specifically, we define a torsional alignment fac-
tor as

Ator (τ ) = 〈cos2 β〉(τ ) = 〈�(τ )| cos2 β|�(τ )〉 . (14)

If the two moieties of the molecule are coplanar, Ator = 1, if
they are twisted by 90◦, the torsional alignment factor is zero.
In the limit of an isotropic distribution, where all torsion an-
gles 0 ≤ β ≤ 2π are equally probable, Ator = 0.5. Below we
will find it useful to introduce measures of the individual moi-
eties alignment with respect to the second pulse polarization
vector as

A(j )(τ ) = 〈cos2 χj 〉(τ ). (15)
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FIG. 3. Alignment factors Ator(τ ) (blue curves) and A(1)(τ ) = A(2)(τ )
(dashed red curves) after interaction with a strong, non-resonant laser
pulse. The effective interaction strength is P = 10. The potential barrier is
V0 = 10 (twisted molecule, panel (a)), V0 = 0 (panel (b)), and V0 = −10
(planar molecule, panel (c)), where V0 is given in units of Etor.

The alignment factors for the three cases described above
are shown in Fig. 3: Panel (a) shows the alignment factors of
an initially twisted molecule (V0 = 10, as in Fig. 2(a)). Before
the interaction (τ = 0), the torsional alignment factor is Ator

≈ 0.11, corresponding to a twisted configuration. The tor-
sional wavepacket which is created by the laser pulse leads
to an increase of the torsional alignment. Due to the potential
barrier V0, the torsional spectrum is not quadratic in the quan-
tum number n. As a consequence, Ator(τ ) does not show ex-
act revivals. Nevertheless, quasi-revivals and quasi-fractional
revivals of the rotational dynamics at τ ≈ π , 2π , etc.,
lead to an increase of the torsional alignment factor to Ator

≈ 0.7. This demonstrates that twisted molecules can be forced
to the coplanar configuration at specific times by strong, non-
resonant laser pulses, as was demonstrated earlier in Refs. 17
and 18. The alignment of the individual parts of the molecule
with respect to the laser field is similar to the alignment of a
single planar rotor with I = Ij (see dotted curve). Due to the
potential barrier, the maximal alignment is slightly reduced
compared to a free rigid rotor. The alignment of an initially
planar molecule (V0 = −10) is shown in Fig. 3(c). Here, the
torsional alignment factor, Ator ≈ 0.9, is high at τ = 0. Since
the laser pulse excites almost no higher torsional states (see
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Fig. 2(c)), the torsional alignment is barely affected by the
laser pulse, the molecules remain in an almost planar geom-
etry. The alignment factor of the individual moieties of the
molecule shows the first revival of the initial alignment at
τ ≈ 2π , illustrating that a coherent torsional wavepacket be-
haves similar to a wavepacket of linear rigid rotor eigenstates,
with a moment of inertia Itot = 2Ij (dotted curve). The inter-
mediate case, V0 = 0, is considered in Fig. 3(b). In this case,
the alignment factors can be calculated analytically since the
motion of the two rotors is decoupled and

|�(τ )〉 = |�(1)(τ )〉|�(2)(τ )〉. (16)

The alignment factor for the individual rotors can then be
written as

A(j ) = 〈cos2 χj 〉 = 1

2
(1 + Re〈exp(i2χj )〉)

= 1

2
(1 + cos(kj0τ )J1 [P sin(τ )]), (17)

where J1 is a Bessel function of first order. The derivation of
Eq. (17) is provided in Appendix A. In Eq. (17), the initial
state is an arbitrary rotational eigenstate

φ
(j )
kj0

(χj ) = 1√
2π

exp(ikj0χj ). (18)

The torsional alignment factor can be expressed as

Ator = 〈cos2 β〉 = 〈cos2(χ1 − χ2)〉

= 1

2
(1 + Re {〈exp(i2χ1)〉〈exp(i2χ2)〉}) . (19)

Inserting Eq. (A7), one obtains that

Ator = 1

2

(
1 + cos[(k10 − k20)τ ]J 2

1 [P sin(τ )]
)
. (20)

In Fig. 3(b), we assume that the molecules are in their
rotational and torsional ground state, corresponding to k10

= k20 = 0. The dynamics of a thermal ensemble will be dis-
cussed in Sec. III. The initial value of both alignment factors
is 1/2, reflecting the isotropic distribution of torsion and rota-
tion angles. Without torsional barrier, the rotational-torsional
dynamics is exactly periodic, the alignment factor A(j)(τ ) is
repeated at multiples of τ rev = 2π . Whenever the two parts of
the molecule are aligned in the direction of the laser field (A(j)

≈ 0.8) or perpendicular to it (A(j) ≈ 0.2), the torsional align-
ment is increased because the two moieties of the molecule
are coplanar.

We conclude this section by exploring the maximal de-
gree of torsional alignment that can be achieved for a given
torsional potential as a function of the interaction strength P.
Figure 4 shows the maximal torsional alignment after excita-
tion with a single laser pulse for torsional potentials ranging
from V0 = −100 to V0 = 100. As we have seen before, planar
molecules with a relatively high barrier for torsion (solid and
dashed blue curves in Fig. 4) have intrinsically a high internal
alignment which is barely affected by a laser pulse, indepen-
dent of the interaction strength. The torsional alignment of
twisted molecules (solid and dashed red curves) rises with in-
creasing interaction strength. For V0 = 0 (black line in Fig. 4),
the maximal alignment increases monotonously until Ator
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FIG. 4. Maximal degree of torsional alignment vs the interaction strength
P. Here, V0 = 0 (black curve), V0 = 1, 10, and 100 (dashed-dotted, solid,
and dashed red curves, respectively) and V0 = −1, −10, and −100 (dashed-
dotted, solid, and dashed blue curves, respectively), where V0 is given in units
of Etor.

= 0.69. The torsional alignment factor Ator = [1 + J 2
1 (x)]/2

has its maximum at x = P sin τ = ±1.85. The maximal de-
gree of internal alignment can, therefore, be achieved with the
effective interaction strength P = 1.85, any further increase of
P does not influence the maximal degree of alignment. An in-
teresting behavior is observed for small but non-zero potential
barriers (dashed-dotted curves in Fig. 4), where the maximal
alignment does not increase monotonously with the interac-
tion strength. Certain values of P, i.e., certain pulse strengths,
are preferable for effective internal alignment. Note, more-
over, that twisted molecules with a very low barrier (dashed-
dotted red curve) can have a larger degree of torsional align-
ment than molecules with no potential barrier at all.

III. NUCLEAR SPIN SELECTIVE
TORSIONAL ALIGNMENT

Molecules containing identical nuclei exist in isomeric
forms called nuclear spin isomers. They are a direct conse-
quence of the symmetrization postulate, which determines
the symmetry of the total molecular wavefunction ψmol

= ψ spa · ψnu.sp and thus allows only specific symme-
try combinations of spatial wavefunctions in the electronic
ground state ψ spa and nuclear spin states ψnu.sp. It has been
demonstrated11, 13, 14 that the alignment of rigid molecules
is nuclear spin selective. In the following, we discuss
how torsional molecular alignment of a non-rigid rotor de-
pends on its nuclear spin. As an example, we consider
diboron tetrafluoride B2F4, which exhibits torsion in the
electronic ground state, as shown by gas phase infrared
spectroscopy.24 As before, we assume that the molecules
are prealigned along the space-fixed z axis (see Fig. 1).
It is shown in Appendix B that the total molecular wave-
function ψmol of adiabatically aligned B2F4 transforms
according to the irreducible representation A2 of the per-
mutation group G4 = {E, (12), (34), (12)(34)}. Here,
(12) and (34) denote the permutation of nuclei 1 with 2 and
3 with 4, respectively. The labeling of the identical nuclei is
shown in Fig. 5, and the irreducible representations of G4 are
given in the character table (see Table I). B2F4 exists in the
form of four nuclear spin isomers denoted by spa[nu.sp],
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FIG. 5. Reference structure of B2F4, showing the labeling of the nuclei.

where spa and nu.sp stand for the irreducible representations
of spatial and nuclear spin wavefunctions. The four nuclear
spin isomers are

A1[A2], A2[A1], B1[B2], and B2[B1]. (21)

The potential barrier for B2F4 is |V0| ≈ 0.02 eV
= 118Etor.25 Such barrier leads to a high degree of alignment
of the lowest torsional eigenstate, as seen in Fig. 4. At higher
initial temperature, the torsional wavefunctions are less local-
ized and show a smaller degree of torsional alignment; their
behavior approaches unhindered torsion as the thermal tor-
sional energy exceeds the barrier height. In the following, we
therefore assume that V0 = 0 in order to keep the expressions
simple and transparent. The spatial eigenfunctions can then be
written as a product of eigenfunctions of the individual rotors

φk1,k2 (χ1, χ2) = φk1 (χ1)φk2 (χ2) = 1

2π
exp(ik1χ1) exp(ik2χ2)

(22)
with the energy eigenvalues

Ek1,k2 = 1

4

(
k2

1 + k2
2

)
. (23)

The symmetry of the nuclear spin state determines which
combinations of k1 and k2 are allowed: The nuclear spin iso-
mer A1[A2] has only states with k1 = even and k2 = even;
for isomer A2[A1] only odd values of k1 and k2 are allowed;
and for the isomers B1[B2] and B2[B1], k1 is even and k2 is
odd, and vice versa. The energy eigenvalues of the four nu-
clear spin isomers are shown in Fig. 6. Although the sym-
metrization postulate allows for four different nuclear spin
isomers, only three of them can be distinguished according
to their energies; the two B-isomers are degenerate. The tor-
sional alignment factors of a system that is initially in an
eigenstate with the quantum numbers k10 and k20 are given
by Eqs. (17) and (20). Averaged over an initially thermal en-
semble of molecules at temperature T, the alignment factor of

TABLE I. The character table of the group G4 together with the transforma-
tion properties of the angles χ1 and χ2 under the the permutations of G4.

G4 E (12) (34) (12)(34)

χ1 χ1 χ1 + π χ1 χ1 + π

χ2 χ2 χ2 χ2 + π χ2 + π

A1 1 1 1 1
A2 1 −1 −1 1
B1 1 −1 1 −1
B2 1 1 −1 −1

FIG. 6. Energy levels Ek1,k2 for the four nuclear spin isomers of diboron
tetrafluoride. The energy is given in units of Etor and the nuclear spin isomers
are denoted by spa[nu.sp].

each isomer is given by

〈〈cos2 ζ 〉〉 =
∑

k10,k20∈

exp
( − Ek10,k20

kBT

)
Q

〈cos2 ζ 〉k10,k20 , (24)

where Q is the Maxwell-Boltzmann partition function. The
summation contains only those kj0 that are allowed for a given
isomer. The angle ζ is either the torsional angle β or one of
the rotation angles χ j of the individual rotors. An ensemble
of B2F4 molecules contains all four nuclear spin isomers, each
weighted by a function that depends on the corresponding tor-
sional eigenvalue and spin statistics, as shown in Appendix B
in Eq. (B5).

The alignment factors A(j)(τ ) and Ator(τ ) for a thermal
ensemble of B2F4 molecules with the initial temperature
T = 1 K are shown in Fig. 7 as red and blue curves,
respectively. For B2F4, the effective interaction strength P
= 10 can be obtained, for instance, with a laser pulse with
a duration of 100 fs and an intensity of 8 × 1012 W/cm2. At T
= 1K, only the ground state of each isomer (see Fig. 6) is pop-
ulated initially. Immediately after the interaction (τ ≈ 0) and
close to the revival time τ rev = 2π , we observe essentially
the same behavior as discussed in the context of Fig. 3(b).
Between revivals, however, the structures observed in
Fig. 3(b) are washed out. In particular, no torsional align-
ment is observed at τ ≈ π and τ ≈ 3π , contrary to the
observations of Fig. 3(b). The origin of the difference is
readily understood by considering the alignment factors of

FIG. 7. Torsional alignment factors Ator(τ ) (blue curve) and A(1)(τ )
= A(2)(τ ) (dashed red curve) for a thermal ensemble of B2F4 at T = 1 K
and P = 10.
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FIG. 8. Alignment factors A(1)(τ ) (solid curves) and A(2)(τ ) (dashed curves) for the four nuclear spin isomers of B2F4 for T = 1 K and P = 10. The isomers
A1[A2] and A2[A1] are shown in green and brown curves, isomer B1[B2] is depicted in yellow and isomer B2[B1] in red.

the four individual nuclear spin isomers, Figs. 8 and 9.
Figure 8 shows the alignment of the two BF2-groups with re-
spect to the space-fixed x axis for the four nuclear spin iso-
mers. Immediately after the interaction, all four isomers show
the same rotational dynamics; the alignment of both molecu-
lar moieties increases from a uniform distribution (A(j) = 0.5)
to A(j) = 0.69. This pattern is reconstructed at τ ≈ 2π . At τ

≈ π however, different nuclear spin isomers behave differ-
ently. First, for the isomers A1[A2] (green curve) and A2[A1]
(brown curve), the alignment factors A(1)(τ ) and A(2)(τ ),
Eq. (17), are identical for all τ since their initial states are
k10 = k20 = 0 and k10 = k20 = 1, respectively. At τ = 0.88π ,
the alignment factors A(j) are maximal for the A1[A2] isomer
and minimal for the A2[A1] isomer. In other words, for one
isomer, both BF2-groups are aligned along the space-fixed
x axis, whereas for the other isomer, both BF2-groups are

aligned along the y axis. For the two B-isomers (yellow and
red curves in Fig. 8), the two BF2-groups have different ini-
tial states with k10 = 0 and k20 = 1 and vice versa. For isomer
B1[B2], one rotor (solid curve) is initially in state k10 = 0,
whereas the other (dashed curves) is in state k20 = 1. As a
consequence, one rotor is aligned along the space-fixed x axis
at τ = 0.88π , whereas the other is aligned perpendicular to
it. Finally, for isomer B2[B1] (solid and dashed red curves),
one rotor is aligned along the y axis and the second along the
x axis. Thus, at τ = 0.88π , the molecules are predominantly
twisted. This behavior is also reflected in the torsional align-
ment factor, as shown in Fig. 9. All isomers show an increase
of the torsional alignment at τ = 0.12π and τ = 2.12π . At
τ = 0.88π and τ = 1.2π , the isomers A1[A2] and A2[A1]
(green and brown curves) are also internally aligned. For the
other two isomers, Ator decreases below 0.5 at τ = 0.88π and

FIG. 9. Torsional alignment factor Ator(τ ) for the four nuclear spin isomers of B2F4 for T = 1 K and P = 10. The isomers A1[A2] and A2[A1] are shown in
green and brown curves, isomer B1[B2] is depicted in yellow and isomer B2[B1] in red.
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FIG. 10. Polar plot of the probability densities |�(j)|2 for each BF2-group at
τ = 0.88π . The probabilities |�(1)(χ1)|2 and |�(2)(χ2)|2 are shown in the
left and right panels, respectively. The green curves (upper panel) represent
isomer A1[A2] and the red curves (lower panel) show isomer B2[B1].

1.2π , i.e., they have a twisted transient structure. Here, we
see the interesting phenomenon that, at specific times, in a
sample of rotating B2F4 molecules, a subset of the molecules
has a planar geometry, whereas other molecules are mostly
twisted. This can also be seen in Fig. 10, which shows, as
an example, the probability density of isomer A1[A2] (upper
panel, in green) and of isomer B2[B1] (lower panel, in red) at
τ = 0.88π . Both BF2-groups of isomer A1[A2] point in the
x-direction. The probability for the molecule to be planar is
thus high. Isomer B2[B1] has one BF2-group which points
in the x-direction, while the other points in the y-directions:
the molecule is predominantly twisted. The torsional dynam-
ics of those non-rigid molecules is thus highly nuclear spin
selective.

IV. NUCLEAR SPIN SELECTIVE CONTROL
OF ANGULAR MOMENTA

In this section, we show how the transient difference in
the torsional dynamics illustrated above can be transformed
into permanent, nuclear spin selective angular momenta. Ear-
lier research has demonstrated the possibility of using a com-
bination of two time-delayed laser pulses with different po-
larization to induce uni-directional rotation of rigid molecules
about a molecular axis.2–6 In this section, we extend this con-
cept to non-rigid rotors. As in Sec. III, the system is subjected
to a short x-polarized laser pulse at time τ = 0 that excites
rotational-torsional wavepackets. At time τ = τ 2 a second
short laser pulse with different polarization direction interacts
with the molecules. If we assume that the torsional barrier
is negligible, i.e., set V0 = 0, the wavefunction is separable,
|�(τ )〉 = |�(1)(τ )〉|�(2)(τ )〉. After the interaction, the wave-
functions for the rotor j are given by

|�(j )(τ+
2 )〉 = exp[iP2 cos2(χj − χ0)]|�(j )(τ2)〉, (25)

where P2 is the effective interaction strength of the second
pulse, |�(j)(τ 2)〉 is the wavepacket immediately before the in-
teraction, and χ0 is the angle between the polarization direc-
tions of the two laser pulses. The wavepackets evolve freely
after the interaction, and their angular momenta are constants.
It is, therefore, sufficient to evaluate the angular momenta at
τ = τ+

2 . The average angular momentum of an individual pla-
nar rotor is〈

l̂(j )
z

〉 = −i� 〈�j (τ+
2 )| ∂

∂χj

|�j (τ+
2 )〉, (26)

from which, using Eq. (25), one obtains〈
l̂(j )
z

〉 = �P2[sin(2χ0)Re〈exp(i2χj )〉
− cos(2χ0) Im〈exp(i2χj )〉]

= �P2J1[P sin(τ2)]{sin(2χ0) cos(kj0τ2)

− cos(2χ0) sin(kj0τ2)}. (27)

Two other interesting observables are the torsional angular
momentum〈

l̂tor
z

〉 = −i� 〈�(τ+
2 )| ∂

∂β
|�(τ+

2 )〉 = 1

2

(〈
l̂(1)
z

〉 − 〈
l̂(2)
z

〉)
(28)

and the overall z-component of the angular momentum

〈l̂rot
z 〉 = −i� 〈�(τ+

2 )| ∂

∂χ
|�(τ+

2 )〉 = 〈
l̂(1)
z

〉 + 〈
l̂(2)
z

〉
. (29)

Note that, for the model employed here and described by the
Hamiltonian of Eq. (2), the angular momentum lrot

z is always
conserved under field-free conditions. The expectation value
of the torsional angular momentum is only time-independent
if the torsional potential V(β) is neglected. For the specific
case χ0 = π /4, we have〈

l̂tor
z

〉 = �P2[〈cos2 χ1〉(τ2) − 〈cos2 χ2〉(τ2)]

= �P2[A(1)(τ2) − A(2)(τ2)] (30)

and 〈
l̂rot
z

〉 = 2�P2[〈cos2 χ1〉(τ2) + 〈cos2 χ2〉(τ2) − 1]

= 2�P2[A(1)(τ2) + A(2)(τ2) − 1]. (31)

The torsional and rotational angular momenta are thus com-
pletely determined by the degree of torsional alignment at
the interaction time τ 2. Equations (30) and (31) show that the
expectation values of the angular momenta are proportional
to the effective interaction strength of the second pulse, P2.
Figure 11 depicts the rotational (solid curves) and torsional
(dashed curves) angular momenta as functions of the delay
time τ 2 for the four nuclear spin isomers of B2F4, averaged
over an ensemble of molecules initially at a temperature T
= 1 K. For the isomers A1[A2] (green curves) and A2[A1]
(brown curves), the torsional angular momentum is always
zero since both moieties of the molecule gain the same an-
gular momentum, i.e., 〈l̂(1)

z 〉 ≡ 〈l̂(2)
z 〉. The rotational angular

momentum is determined by the degree of alignment of the
two parts of the molecule at the time of the interaction with
the second pulse: at instants where the two moieties of the
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FIG. 11. Expectation value of the z-component of the angular momentum 〈〈l̂rot
z 〉〉 (solid curves) and the torsional angular momentum 〈〈l̂tor

z 〉〉 (dashed curves)
in units of �P2 as a function of the delay time τ 2 for the four nuclear spin isomers of B2F4. Here, P = 10 and T = 1 K. The isomers A1[A2] and A2[A1] are
shown in green and brown curves, isomer B1[B2] is depicted in yellow and isomer B2[B1] in red.

molecule are aligned with respect to the space-fixed x axis
(e.g., at τ 2 = 0.06π ), the molecules gain a large amount of
angular momentum – they start to spin rapidly. The sense of
the rotation can be reversed by changing the delay time such
that the molecules are aligned with respect to the space-fixed y
axis (e.g., at τ 2 = 1.06π ). The behavior of the two B-isomers
(yellow and red curves in Fig. 11) is yet more interesting. For
the B-isomers, 〈l̂(1)

z 〉 = 〈l̂(2)
z 〉 and thus, the torsional angular

momentum does not vanish. Consider, for example, the delay
time τ 2 = 0.88π , where the two moieties of the B-isomers
are perpendicular to each other, as shown in Fig. 10. They are
thus forced by the second pulse to rotate in opposite directions
and the torsional angular momentum is enhanced. At the same
delay time, the two A-isomers have an enhanced rotational an-

gular momentum. The transient differences in rotational and
torsional dynamics that occur after the first pulse have thus
been transformed into permanent nuclear spin selective an-
gular momenta of the molecules. If the delay time is chosen
properly, the angular momentum can be stored internally, as
torsional motion for the two B-isomers and as rotational an-
gular momentum for the A-isomers.

This effect can also be observed for the squares of the an-
gular momenta. For the individual moieties of the molecules,
they are defined as

〈(
l̂(j )
z

)2〉 = −�
2 〈�j (τ+

2 )| ∂2

∂χ2
j

|�j (τ+
2 )〉, (32)

FIG. 12. Expectation values 〈〈(l̂rot
z )2〉〉 (panels (a) and (c)) and 〈〈(l̂tor

z )2〉〉 (panels (b) and (d)) in units of �
2. Here, P = P2 = 10 and T = 1 K. Panels (a) and (b)

show the rotational and torsional angular momentum for χ0 = π /4, in panels (c) and (d), χ0 = π /8. The nuclear spin isomers A1[A2] and A2[A1] are depicted
in green and brown, respectively, the B2[B1] isomer is shown in red, its curve is identical to that of the B1[B2] isomer.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.152.56 On: Tue, 03 Nov 2015 13:13:23



084309-9 Selective control of rotational and torsional J. Chem. Phys. 136, 084309 (2012)

which can be written as〈(
l̂(j )
z

)2〉 = �
2

(
P 2

2
+ P 2

2

2
+ k2

j0

)
− �

2P 2
2

2
J2 [P sin(2τ2)]

× [sin(4χ0) cos(2kj0τ2) + cos(4χ0) sin(2kj0τ2)].

(33)

The expectation value 〈(l̂(j )
z )2〉 consists of a constant part,

which is determined mainly by the effective interaction
strengths P and P2, and a part that depends on the polarization
direction of the second pulse, χ0, as well as on the delay time
τ 2 between the two pulses. With the help of Eq. (33), one can
also determine the square of the torsional angular momentum

〈(
l̂ tor
z

)2〉 = −�
2 〈�(τ+

2 )| ∂2

∂β2
|�(τ+

2 )〉

= 1

4

(〈(
l̂(1)
z

)2〉 + 〈(
l̂(2)
z

)2〉) − 1

2

〈
l̂(1)
z

〉〈
l̂(2)
z

〉
(34)

and the square of the overall angular momentum

〈(
l̂rot
z

)2〉 = −�
2 〈�(τ+

2 )| ∂2

∂χ2
|�(τ+

2 )〉

= (〈(
l̂(1)
z

)2〉 + 〈(
l̂(2)
z

)2〉) + 2
〈
l̂(1)
z

〉〈
l̂(2)
z

〉
. (35)

Here, we note again that the square of the torsional angu-
lar momentum is conserved only if the torsional barrier can
be neglected. Both observables are shown in Fig. 12 for a
thermal ensemble at temperature T = 1 K. Panels (a) and
(b) show the expectations values 〈〈(l̂rot

z )2〉〉 and 〈〈(l̂tor
z )2〉〉, re-

spectively, for χ0 = π /4. At a delay time of τ 2 = 0.88π , the
two A-isomers (green and brown curves) show an increase
of the rotational angular momentum and a decrease of tor-
sional angular momentum. At the same delay time, the two
B-isomers (red curves) display an increase in the torsional
angular momentum and a decrease in the rotational angular
momentum. Thus, the squares of the angular momenta sub-
stantiate our observation and show that also energy (which
is proportional to the square of the angular momentum) can
be predominantly stored either in the rotational or in the tor-
sional degrees of freedom in a nuclear spin selective man-
ner. As seen in Fig. 6, the energy levels of the two B-isomers
are degenerate and we cannot discriminate those two iso-
mers by their rotational or torsional dynamics. The two A-
isomers do have different spectra and can thus be discrim-
inated. As shown in Figs. 12(a) and 12(b), the difference
in the angular momenta of these two isomers is small for
χ0 = π /4. Choosing χ0 = π /8, however (see Figs. 12(c)
and 12(d)), and a delay time τ 2 = 0.45π or τ 2 = 0.55π ,
for instance, one finds that the square of the angular mo-
mentum is maximized for the A2[A1]-isomer and minimized
for the A1[A2] isomer. In summary, with a sequence of two
laser pulses with properly chosen relative polarization direc-
tion and delay time, we can nuclear spin selectively control
the energy and angular momentum of the molecules.

V. CONCLUSIONS

In Secs. I–IV, we explored the possibilities of inducing
and controlling the simultaneous rotational and torsional dy-

namics of non-rigid molecules by strong, non-resonant laser
pulses, employing a model where the major molecular axis is
aligned in space. We then investigated the effects of one and
two short laser pulses polarized perpendicular to the aligned
molecular axis. For systems with negligible torsional barrier,
we derived analytical expressions for the alignment factors
and the angular momenta expectation values. Our focus was
the application of this approach to selective control of rota-
tional and torsional dynamics of the nuclear spin isomers of
non-rigid molecules. As an example, we considered the nu-
clear spin isomers of B2F4. We illustrated that torsional dy-
namics induced by a short, linear-polarized pulse depends on
the nuclear spin of the system: at specific times after the pump
pulse, two of the isomers of B2F4 have a predominantly planar
structure, while the other two isomers are twisted. These tran-
sient differences in the time-dependent molecular torsion can
be transformed into permanent nuclear spin selective angular
momenta: a second time-delayed laser pulse with a different
polarization can induce unidirectional torsion. This leads, de-
pending on the nuclear spin, either to an increase of the overall
rotation or to an enhancement of internal torsion. The energy
and angular momentum of the laser pulse are thus transformed
either into rotational motion of the molecules or into internal
nuclear motion.

In this study, several assumptions have been made in or-
der to keep the expressions simple and transparent. First, we
assumed that the molecules are perfectly aligned – e.g., by a
long, non-resonant laser pulse – throughout the investigated
short-pulse-induced dynamics. Coupling between rotational
and torsional degrees of freedom due to three-dimensional
rotation of the molecules, which has been neglected in the
present model, will effect the rotational-torsional dynamics if
the alignment is not perfect. However, this effect will be re-
duced if a high degree of adiabatic alignment can be achieved.
Second, in the simulations of nuclear spin selective rotation
and torsion, we assumed that the field-free torsional barrier
of the molecules is negligible. We have investigated the ef-
fects of the torsional barrier on the laser induced dynam-
ics for molecules at very low initial temperatures in Sec. II.
These effects can be reduced for higher initial temperatures of
the molecules. More elaborate studies which have to include
the effects of the torsional barrier and the three-dimensional
rotation of the molecules will reveal these effects in
detail.

The ability to selectively control rotation and torsion
of nuclear spin isomers opens a variety of new and excit-
ing opportunities. It has been demonstrated that the trans-
lational motion of molecules in non-uniform fields can
be controlled by shaping the angular distribution of the
molecules.31 Since the angular distribution depends on the
nuclear spin, the strategy developed above can be extended
to spatially separate the nuclear spin isomers of non-rigid
polyatomic molecules. Moreover, if the field energy is stored
in internal nuclear motion, this may lead, depending on
the strength of the interaction, to subsequent chemical re-
actions, such as bond-breaking. Since only particular nu-
clear spin isomers store the energy and angular momen-
tum internally, these reactions will also be nuclear spin
selective.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
ALIGNMENT FACTORS FOR V0 = 0

If the potential barrier between the two parts of the
molecule can be neglected (V0 = 0), they can be treated sep-
arately as rigid rotors in a plane with the rotation angles χ1

and χ2. An analytical expression for the orientation of a pla-
nar rotor has been derived in Ref. 32. Here, we follow this
derivation and apply it in order to calculate the alignment fac-
tor of a planar rotor which is initially in the state

φ
(j )
kj0

(χj ) = 1√
2π

exp(ikj0χj ). (A1)

Due to the interaction with the field, a rotational wavepacket

|�(j )(0+)〉 = exp(iP cos2 χj )
∣∣φ(j )

kj0

〉 =
∑
kj

ckj

∣∣φ(j )
kj

〉
(A2)

is excited. As shown in Ref. 32, the coefficients ckj
can be

written as

ckj
= 〈

φ
(j )
kj

∣∣ exp(iP cos2 χj )
∣∣φ(j )

kj0

〉

=
{

iκj exp
(
i P

2

)
Jκj

(
P
2

)
if kj ± kj0 even

0 if kj ± kj0 odd
, (A3)

where κ j = (kj + kj0)/2 and Jκj
is the Bessel function of order

κ j. The calculation of the alignment factors A(j)(τ ), Eq. (17)
and Ator(τ ), Eq. (20) requires the evaluation of the expectation
values

〈exp(i2χj )〉 = 〈�(j )(τ )| exp(i2χj )|�(j )(τ )〉 (A4)

with

|�(j )(τ )〉 =
∑
kj

ckj
exp(iEkj

τ )
∣∣φ(j )

kj

〉
(A5)

and Ekj
= k2

j /4. Inserting expression Eq. (A3), one obtains

〈exp(i2χj )〉 = (−i) exp(iτ ) exp(ikj0τ )

×
∑
kj

Jkj

(
P

2

)
Jkj +1

(
P

2

)
exp(ikj τ ). (A6)

Using the addition theorem for Bessel function,33 Eq. (A6)
can be simplified to

〈exp(i2χj )〉 = exp(ikj0τ )J1[P sin(τ )]. (A7)

This expression is inserted in Eqs. (17) and (20) in order to
obtain the analytical expressions for the alignment factors.

APPENDIX B: NUCLEAR SPIN ISOMERS OF B2F4

The molecule B2F4 exists in the form of different nu-
clear spin isomers. The symmetrization postulate states that
the wavefunction of a quantum mechanical system changes
its sign if two identical fermions are exchanged and remains
unchanged upon the permutation of two identical bosons. In
the processes considered here, the molecules remain in their
electronic ground state. Since the interaction between the nu-
clear spin and the spatial part of the molecular wavefunction
can be neglected on the time scales involved here, the total
molecular wavefunction �mol can be written as

�mol = �spa · �nu.sp.. (B1)

The permutation symmetry of the nuclear spin state �nu.sp.

thus determines the symmetry of the spatial wavefunction.
The nuclear spin isomers of a (non-rigid) molecule can be
identified with the help of the permutation subgroup of the
molecular symmetry (MS) group of the system.14, 34 The MS-
group of diboron tetrafluoride is a G16-group,35 which has the
permutation subgroup

G8 = {E, (12), (34), (12)(34), (13)(24)(56), (14)(23)(56),

× (1324)(56), (1423)(56)} , (B2)

where E denotes the identity (12), for example, the permu-
tation of the nuclei 1 with 2, and (1324) means the cyclic
permutation of four identical nuclei, i.e., nuclei 1 is replaced
by 3, nuclei 3 is replaced by (2), nuclei 2 is replaced by 4,
which is replaced by nuclei 1. The labeling of identical nuclei
is shown in Fig. 5. In this study, we assume that the major
molecular axis ea is sharply aligned with respect to space-
fixed z axis. Therefore, only the permutations (12), (34) and
(12)(34) are feasible and it is sufficient to characterize the nu-
clear spin states according to the irreducible representations
of the permutation group

G4 = {E, (12), (34), (12)(34)} . (B3)

It is isomorphic to the point group C2v and has the character
table shown in Table I. The character table also shows the
effect of the symmetry operations on the angles χ1 and χ2 as
defined in Fig. 1. Here, it is assumed that B2F4 ≡ 11B19

2 F4,
with nuclear spins IB = 3/2 and IF = 1/2, i.e., all nuclei of the
molecule are fermions. Thus, under the operations of G4 the
wavefunctions �mol must transform according to

�mol ∼ A2. (B4)

How the symmetry of the nuclear spin states ψnu.sp can be
found is described in Ref. 34. Since the group G4 contains
only permutations which interchange fluorine nuclei, the sym-
metry of the 24 = 16 spin states of the fluorine nuclei needs
to be determined. One finds that

nu.sp = 9A1 ⊕ 1A2 ⊕ 3B1 ⊕ 3B2. (B5)

The spatial eigenfunctions of B2F4 can be written as

�spa = φk1,k2 (χ1, χ2) = 1

2π
exp(ik1χ1) exp(ik2χ2) (B6)

since we neglect the torsional barrier. Using the transforma-
tion properties of the two angles χ1 and χ2, given in Table I,
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it is straightforward to verify that

φk1,k2 ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1 if k1 even, k2 even

A2 if k1 odd, k2 odd

B1 if k1 even, k2 odd

B2 if k1 odd, k2 even

. (B7)

Since the total molecular wavefunction transforms according
to A2, one can conclude that (aligned) B2F4 has four nuclear
spin isomers which we denote by spa[nu.sp]:

A1[A2], A2[A1], B1[B2], B2[B1]. (B8)
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