3,104 research outputs found

    Purification-based metric to measure the distance between quantum states and processes

    Get PDF
    In this work we study the properties of an purification-based entropic metric for measuring the distance between both quantum states and quantum processes. This metric is defined as the square root of the entropy of the average of two purifications of mixed quantum states which maximize the overlap between the purified states. We analyze this metric and show that it satisfies many appealing properties, which suggest this metric is an interesting proposal for theoretical and experimental applications of quantum information.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with arXiv:quant-ph/0408063, arXiv:1107.1732 by other author

    Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems

    Get PDF
    We study the spectral behavior of higher order elliptic operators upon domain perturbation. We prove general spectral stability results for Dirichlet, Neumann and intermediate boundary conditions. Moreover, we consider the case of the bi-harmonic operator with those intermediate boundary conditions which ap-pears in the study of hinged plates. In this case, we analyze the spectral behavior when the boundary of the domain is subject to a periodic oscillatory perturbation. We will show that there is a critical oscillatory behavior and the limit problem depends on whether we are above, below or just sitting on this critical value. In particular, in the critical case we identify the strange term appearing in the limiting boundary conditions by using the unfolding method from homogenization theory

    A family of generalized quantum entropies: definition and properties

    Full text link
    We present a quantum version of the generalized (h,Ď•)(h,\phi)-entropies, introduced by Salicr\'u \textit{et al.} for the study of classical probability distributions. We establish their basic properties, and show that already known quantum entropies such as von Neumann, and quantum versions of R\'enyi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicr\'u form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,Ď•)(h,\phi)-entropies under the action of quantum operations, and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement, and introduce a discussion on possible generalized conditional entropies as well.Comment: 26 pages, 1 figure. Close to published versio

    Unified entropic measures of quantum correlations induced by local measurements

    Full text link
    We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and R\'enyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.Comment: 10 pages, 1 figur

    Jensen Shannon divergence as a measure of the degree of entanglement

    Get PDF
    The notion of distance in Hilbert space is relevant in many scenarios. In particular, distances between quantum states play a central role in quantum information theory. An appropriate measure of distance is the quantum Jensen Shannon divergence (QJSD) between quantum states. Here we study this distance as a geometrical measure of entanglement and apply it to different families of states.Comment: 5 pages, 2 figures, to appear in the special issue of IJQI "Noise, Information and Complexity at Quantum Scale", eds. S. Mancini and F. Marcheson

    Natural Metric for Quantum Information Theory

    Full text link
    We study in detail a very natural metric for quantum states. This new proposal has two basic ingredients: entropy and purification. The metric for two mixed states is defined as the square root of the entropy of the average of representative purifications of those states. Some basic properties are analyzed and its relation with other distances is investigated. As an illustrative application, the proposed metric is evaluated for 1-qubit mixed states.Comment: v2: enlarged; presented at ISIT 2008 (Toronto

    Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues

    Full text link
    We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.Comment: This is a preprint version of a paper that will appear in the Proceedings of the 9th ISAAC Congress, Krak\'ow 201
    • …
    corecore