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Higher order elliptic operators on variable domains.

Stability results and boundary oscillations for intermediate

problems.

José M. Arrieta and Pier Domenico Lamberti

Abstract: We study the spectral behavior of higher order elliptic operators upon
domain perturbation. We prove general spectral stability results for Dirichlet, Neu-
mann and intermediate boundary conditions. Moreover, we consider the case of the
bi-harmonic operator with those intermediate boundary conditions which appears in
study of hinged plates. In this case, we analyze the spectral behavior when the bound-
ary of the domain is subject to a periodic oscillatory perturbation. We will show that
there is a critical oscillatory behavior and the limit problem depends on whether we
are above, below or just sitting on this critical value. In particular, in the critical case
we identify the strange term appearing in the limiting boundary conditions by using
the unfolding method from homogenization theory.

Keywords: higher order elliptic operators, Dirichlet, Neumann, intermediate bound-
ary conditions, oscillatory boundaries, homogenization

2000 Mathematics Subject Classification: 35J40, 35B20, 35B27, 35P15

1 Introduction

In this paper, we consider the general problem of the spectral behavior of an elliptic
partial differential operator (i.e., the behavior of its eigenvalues, eigenfunctions as well
as of the solutions to the corresponding Poisson problem) when the underlying domain
is perturbed. In RN with N ≥ 2, we will consider a family of domains {Ωε}0<ε≤ε0
which approach a limiting domain Ω as ε → 0, in certain sense to be specified and we
will also consider higher order selfadjoint operators (order 2m with m ≥ 1) with not
necessarily constant coefficients and with certain boundary conditions. The operators
will have compact resolvent and therefore the spectrum will consist only of eigenvalues
of finite multiplicity.

Importantly, the associated energy spaces, generically denoted by V (Ωε), will satisfy
the condition Wm,2

0 (Ωε) ⊂ V (Ωε) ⊂ Wm,2(Ωε) and will depend on the domain and
the boundary conditions considered. We will consider different types of boundary
conditions according to the choice of the spaces V (Ωε). If V (Ωε) = Wm,2

0 (Ωε) they
will be called Dirichlet boundary conditions, if V (Ωε) = Wm,2(Ωε) they will be called

Neumann boundary conditions, and in case V (Ωε) = Wm,2(Ωε) ∩W k,2
0 (Ωε) for certain

1 ≤ k ≤ m − 1, they will be called “intermediate boundary condition”. We refer to
[7] and references therein for a pioneer discussion on the stability properties under the
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three types of boundary conditions, including an analysis of the so-called Babuška-
Sapondzhyan paradox. We also refer to [29] for a further discussion on the paradox
and [30] for a general reference in this type of problems. We mention that sharp
stability estimates for the eigenvalues of higher order operators subject to Dirichlet
and Neumann boundary conditions have been recently proved in [12] where uniform
classes of domain perturbations have been considered (see also [13] for related results);
moreover, in [9, 10] further restrictions on the classes of open sets allow obtaining also
analyticity results.

Our goal is twofold. On one hand, we will provide a rather general condition
describing the way the domains converge to the limiting one, which will guarantee
the spectral convergence of the operator in Ωε to the appropriate limiting operator
in Ω. The condition, which we will denote by (C), see Section 3 below, is expressed
intrinsically and it is posed independently of the boundary conditions that we consider.
Needless to say that for a particular family of perturbed domains to check that the
condition is satisfied will depend heavily on the boundary conditions imposed. This
condition generalizes previous ones formulated for Dirichlet and Neumannn boundary
conditions.

On the other hand, we will focus on the case of higher order operators with “inter-
mediate boundary” conditions, paying special attention to the case of the biharmonic
operator. We will obtain almost sharp conditions on the way the boundaries can be
perturbed to guarantee the spectral convergence with preservation of the same inter-
mediate boundary conditions for general higher order operators. Afterwards we will
analyze in detail the case of the biharmonic when the boundary of the domain presents
an oscillatory behavior. We will see that there is a critical oscillatory behavior such
that, when the oscillations are below this threshold we have spectral stability, while
for oscillations above this value we approach a problem with Dirichlet boundary con-
ditions. For exactly the threshold value, there appears an extra term in the boundary
condition for the limiting problem, which maybe interpreted as a “strange curvature”.
The existence of this critical value is well known in other situations. See for instance
the seminal paper [20] and also, [29]. In other context see [17, 2, 28].

We describe now the contents of the paper. In Section 2 we set up the operators,
fix the notation and include a subsection where we describe the basic elements of
the technique called “compact convergence of operators” which will be used in this
paper. In Section 3 we state condition (C), see Definition 3.1, and show that this
condition implies the “compact convergence of operators” and therefore, the spectral
stability of the operators. In Section 4 we consider the case of Dirichlet boundary
conditions while in Section 5 the case of Neumann boundary conditions. The case of
intermediate boundary conditions is studied in Section 6. We prove Lemma 6.2 and
Corollary 6.18 which provides conditions guaranteeing the spectral stability for the
intermediate boundary conditions. These sections cover the first goal of the paper.

The second goal is achieved in sections 7 and 8 . Notice that in Section 7 we analyze
the case of a biharmonic operator with intermediate boundary conditions (in this case
V (Ω) = W 2,2(Ω) ∩W 1,2

0 (Ω)) where the domain is perturbed in an oscillatory way. As
a matter of fact if the boundary of the unperturbed domain is given locally around
certain point by the function xN = g(x1, . . . , xN−1) for x̄ = (x1, . . . , xN−1) ∈ W for
some nice (N−1)-dimensional domain W , with g ≡ 0 (that is, the boundary is flat) and
the boundary of the perturbed domain is given as xN = gε(x̄) where gε(x̄) = εαb(x̄/ε)
for some smooth and periodic function b, then α = 3/2 is a critical value. If α > 3/2,
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the oscillations are not too strong and the limit problem has also the same intermediate
boundary conditions. If α < 3/2, the oscillations are too wild and the limit problem
has a Dirichlet boundary condition in W . The critical case α = 3/2 is treated in detail
in Section 8. We need to treat this case as a homogenization problem and will use the
unfolding operator method to show that the limit boundary condition in W contains
an extra term. The results of this paper were announced in [5].

2 Preliminaries, notation and some examples

We introduce in this section the general setting of the paper, the basic notation to
follow the contents and some relevant examples. Also, we include the definition of
“compact convergence”.

2.1 Higher order elliptic operators

We fix some notation and we recall basic facts from standard spectral theory for elliptic
operators. We refer to Davies [22] for details and proofs.

Let N,m ∈ N and Ω be an open set in RN . We denote by Wm,2(Ω) the Sobolev
space of real-valued functions in L2(Ω), which have distributional derivatives of order
m in L2(Ω), endowed with the norm

‖u‖2Wm,2(Ω) = ‖u‖2L2(Ω) +
∑
|α|=m

‖Dαu‖2L2(Ω). (2.1)

We denote by Wm,2
0 (Ω) the closure in Wm,2(Ω) of the space of the C∞-functions with

compact support in Ω.
Let m̂ be the number of the multi-indices α = (α1, . . . , αN ) ∈ NN0 with length

|α| = α1 + · · · + αN equal to m. Here N0 = N ∪ {0}. For all α, β ∈ NN0 such that
|α| = |β| = m, let Aαβ be bounded measurable real-valued functions defined on RN
satisfying Aαβ = Aβα and the condition∑

|α|=|β|=m

Aαβ(x)ξαξβ ≥ 0 (2.2)

for all x ∈ RN , ξ = (ξα)|α|=m ∈ Rm̂. For all open sets Ω in RN we define

QΩ(u, v) =
∑

|α|=|β|=m

∫
Ω
AαβD

αuDβv dx+

∫
Ω
uv dx, (2.3)

for all u, v ∈Wm,2(Ω) and
QΩ(u) = QΩ(u, u).

Observe that by condition (2.2) QΩ is in fact a scalar product in Wm,2(Ω).
Let V (Ω) be a linear subspace of Wm,2(Ω) containing Wm,2

0 (Ω). We recall that if

V (Ω) endowed with the norm Q
1/2
Ω (·) is complete then there exists a uniquely deter-

mined non-negative selfadjoint operator HV (Ω) such that DomH
1/2
V (Ω) = V (Ω) and

QΩ(u, v) =< H
1/2
V (Ω)u,H

1/2
V (Ω)u >L2(Ω), ∀ u, v ∈ V (Ω).

3



In particular, a function u belongs to the domain of HV (Ω) if and only if u ∈ V (Ω) and
there exists f ∈ L2(Ω) such that

QΩ(u, v) =< f, v >L2(Ω), ∀v ∈ V (Ω). (2.4)

Clearly, HV (Ω)u = f . Equation (2.4) is the weak formulation of the classical problem

Lu = f, in Ω (2.5)

where L is the classical operator defined as

Lu := (−1)m
∑

|α|=|β|=m

Dα
(
AαβD

βu
)

+ u (2.6)

and the unknown u is subject to suitable homogeneous boundary conditions depending
on the choice of V (Ω) (see the examples below).

We recall that if the embedding V (Ω) ⊂ L2(Ω) is compact then the operator HV (Ω)

has compact resolvent. In this case the spectrum is discrete and consists of a sequence
of eigenvalues λn[V (Ω)] of finite multiplicity which can be represented by means of the
Min-Max Principle:

λn[V (Ω)] = inf
E⊂V (Ω)
dimE=n

sup
u∈E
u6=0

QΩ(u)

‖u‖2
L2(Ω)

.

Correspondingly, there exists an orthonormal basis in L2(Ω) of eigenfunctions ϕn[V (Ω)]
associated with the eigenvalues λn[V (Ω)].

Note that, since the coefficients Aαβ are fixed and bounded then

Q
1/2
Ω (u) ≤ C‖u‖Wm,2(Ω),

for all u ∈ Wm,2(Ω) where C is a positive constant independent of u and Ω. Thus,

since we assume that the space (V (Ω), Q
1/2
Ω (·)) is complete, we have that

c‖u‖Wm,2(Ω) ≤ Q
1/2
Ω (u),

for all u ∈ V (Ω), where c is a positive constant independent of u. In other words, the

two norms Q
1/2
Ω (·) and ‖ · ‖Wm,2(Ω) are equivalent in V (Ω). Note that in general the

constant c may depend on Ω. However, stronger assumptions on the coefficients allow
us to get c independent of Ω. For example, if the coefficients Aαβ satisfy the uniform
ellipticity condition ∑

|α|=|β|=m

Aαβ(x)ξαξβ ≥ θ
∑
|α|=m

|ξα|2 (2.7)

for all x ∈ RN , ξ = (ξα)|α|=m ∈ Rm̂, then it is straightforward that c can be chosen

c = min{
√
θ, 1} which is independent of Ω. Condition (2.7) will not be used in Section

2 which is devoted to a general stability theorem. However, we shall use it in the
following sections devoted to applications.
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2.2 E-compact convergence

Let Ω be a fixed open set and V (Ω) its corresponding space as in the previous section.
For all sufficiently small ε > 0 we consider perturbations Ωε of Ω and we denote by V (Ωε)
the corresponding spaces of functions defined on Ωε. We assume that the coefficients
Aαβ are fixed functions defined in the whole of RN and that the operators HV (Ω) and
HV (Ωε) are well-defined and have compact resolvents.

We denote by E the extension-by-zero operator, which means that given a real-
valued function u defined on some set in RN , Eu is the function extended by zero
outside the given set. Clearly, for each ε > 0, E can be thought as an operator acting
from L2(Ω) to L2(Ωε), consisting in extending the function by zero to all of RN and
then restricting it to Ωε. As a matter of fact, this operator E will be the key to compare
functions and operators defined in Ω and Ωε. The following concepts and definitions go
back to the works of F. Stummel, see [33] and G. Vainniko see [34, 35] among others.
We also refer to [15, 4]. Here we denote by L(X) the space of bounded linear operators
acting from a normed space X to itself.

Definition 2.8 i) We say that vε ∈ L2(Ωε) E-converges to v ∈ L2(Ω) if ‖vε−Ev‖L2(Ωε)

→ 0 as ε→ 0. We write this as vε
E→ v.

ii) The family of bounded linear operators Bε ∈ L(L2(Ωε)) EE- converges to B ∈
L(L2(Ω)) if Bεvε

E→ Bv whenever vε
E→ v. We write this as Bε

EE→ B.
iii) The family of bounded linear and compact operators Bε ∈ L(L2(Ωε)) E-compact

converges to B ∈ L(L2(Ω)) if Bε
EE→ B and for any family of functions vε ∈ L2(Ωε)

with ‖vε‖L2(Ωε) ≤ 1 there exists a subsequence, denoted by vε again, and a function

w ∈ L2(Ω) such that Bεvε
E→ w. We write Bε

C→ B.

There is a strong relation between the E-compact convergence of a family of oper-
ators and their spectral convergence. By this, we mean the convergence of eigenvalues
and the associated spectral projections, see [3, Section 2.1]. Since in this particular
work we are mainly dealing with B and Bε which are the inverses of the operators
HV (Ω) and HV (Ωε) defined above, we will define the spectral convergence just for this
special type of operators. Hence, if we denote by {(λεn, φεn)}∞n=1 the eigenvalues and
eigenfunctions of HV (Ωε) and by {(λn, φn)}∞n=1 the eigenvalues and eigenfunctions of
HV (Ω), (where we understand that the eigenvalues are repeated as many times as their
multiplicity and the eigenfunctions are extended by zero outside Ωε and Ω and they are
normalized in L2(RN ), we will say that the spectra behaves continuously at ε = 0, if
for fixed n ∈ N we have that λεn → λn as ε→ 0 and the spectral projections converge in
L2(RN ), that is, if a 6∈ {λn}∞n=1, and λn < a < λn+1, then if we define the projections
P εa : L2(RN )→ L2(RN ), P εa(ψ) =

∑n
i=1(φεi , ψ)L2(RN )φ

ε
i then

sup{‖P εa(ψ)− P 0
a (ψ)‖L2(RN ) : ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} → 0, as ε→ 0.

The convergence of the spectral projections is equivalent to the following: for each
sequence εk → 0 there exists a subsequence, that we denote again by εk, and a complete
system of orthonormal eigenfunctions of the limiting problem {φn}∞n=1 such that ‖φεkn −
φn‖L2(RN ) → 0 as k →∞.

As a matter of fact, we can show the following (see [4, Thm. 4.1], [15]).
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Proposition 2.9 Assume the operator E satisfies the condition ‖Eu‖L2(Ωε) → ‖u‖L2(Ω)

for each u ∈ L2(Ω). If H−1
V (Ωε)

∈ L(L2(Ωε)) are compact and H−1
V (Ωε)

C→ H−1
V (Ω), then we

have the spectral convergence of HV (Ωε) to HV (Ω).

2.3 Examples

We consider in this section some relevant examples of higher order operators.

2.3.1 Polyharmonic operators

An important class of higher order operators is given by the polyharmonic operators
which we brefly discuss here as a prototypical example, see for instance [24].

For m ∈ N, we set Aαβ = δαβm!/α! for all α, β ∈ NN with |α| = |β| = m, where
δαβ = 1 if α = β and δαβ = 0 otherwise. With this choice, condition (2.7) is satisfied.

Let k ∈ N0, 0 ≤ k ≤ m and V (Ω) = Wm,2(Ω) ∩W k,2
0 (Ω), endowed with the norm

(2.1) of Wm,2(Ω). If k = m and Ω has finite Lebesgue measure then V (Ω) is a closed
subspace of Wm,2(Ω) and the embedding V (Ω) ↪→ L2(Ω) is compact. If 0 < k <
m then, under very weak regularity assumptions on Ω (say, Ω has a quasi-resolved
boundary1 in the sense of Burenkov[11, §4.3]), V (Ω) is a closed subspace of Wm,2(Ω)

and V (Ω) ↪→W k,2
0 (Ω); if in addition Ω has finite Lebesgue measure then the embedding

W k,2
0 (Ω) ↪→ L2(Ω) is compact, hence the embedding V (Ω) ↪→ L2(Ω) is also compact.

If k = 0 and the open set Ω is bounded and of class C0, see Definition 5.1 below, then
the embedding V (Ω) ↪→ L2(Ω) is compact (see Burenkov [11, Thm. 8, p.169]).

Note that if k = m then V (Ω) = Wm,2
0 (Ω) and integrating by parts one can realize

that

∑
|α|=|β|=m

∫
Ω
AαβD

αuDβv dx =

{ ∫
Ω ∆

m
2 u∆

m
2 vdx, if m is even ,∫

Ω∇∆
m−1

2 u∇∆
m−1

2 vdx, if m is odd ,

for all u, v ∈Wm,2
0 (Ω). In this case we obtain in (2.6) the operator, Lu = (−∆)mu+ u

subject to the Dirichlet boundary conditions u = ∂u
∂ν = . . . ∂

m−1u
∂νm−1 = 0 on ∂Ω. Here

and in the sequel ν denotes the unit outer normal to ∂Ω. The operator (−∆)mu is the
classical polyharmonic operator of order 2m.

In the general case k ≤ m, the classical problem reads
(−∆)mu+ u = f, in Ω,
∂ju
∂νj

= 0, ∀ j = 0, . . . , k − 1, on ∂Ω,

Bju = 0, ∀ j = 1, . . . ,m− k, on ∂Ω,

where Bj are uniquely defined ‘complementing’ boundary operators. See Necǎs [31] for
details.

1this includes the case of open sets satisfying the classical cone condition, as well as the case of open
sets of class C0, see Definition 5.1 below.
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2.3.2 Biharmonic operator with Dirichlet, Neumann and Intermediate bound-
ary conditions

Let us consider the case m = 2 in the previous example. The quadratic form (2.3) will
read ∫

Ω
D2u : D2vdx+

∫
Ω
uvdx, (2.10)

for all u, v in an appropriate energy space V (Ω). Here and in the sequel D2u denotes

the Hessian matrix of u and D2u : D2v =
∑N

i,j=1
∂2u

∂xi∂xj
∂2v

∂xi∂xj
is the Frobenius product

of the two matrices.
As above, if V (Ω) = W 2,2

0 (Ω), the classical operator (2.5) is given by the biharmonic
operator and we obtain the classical Dirichlet problem

∆2u+ u = f, in Ω,
u = 0, on ∂Ω,
∂u
∂ν = 0, on ∂Ω.

It is well-known that if N = 2 the Dirichlet problem for the biharmonic operator is
related for example to the study of the bending of clamped plates.

If V (Ω) = W 2,2(Ω), by using the ‘Biharmonic Green Formula’ (8.63) we obtain the
classical Neumann problem

∆2u+ u = f, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

div∂Ω((D2u) · ν)∂Ω + ∂∆u
∂ν = 0, on ∂Ω,

involving the well-known tangential divergence operator, see Section 8.4 for basic def-
initions. We recall that if N = 2 the Neumann problem for the biharmonic operator
arises for example in the study of the bending of free plates. See also Chasman [18].

Finally, If V (Ω) = W 2,2(Ω) ∩W 1,2
0 (Ω), proceeding as above we obtain the classical

intermediate problem 
∆2u+ u = f, in Ω,
u = 0, on ∂Ω,
∂2u
∂ν2 = 0, on ∂Ω.

(2.11)

We recall that if N = 2 the intermediate problem for the biharmonic operator arises
for example in the study of the bending of hinged plates (sometimes called simply-
supported).

We note that since u = 0 on ∂Ω then the second boundary condition in (2.11) can
be written as

∆u−K∂u

∂ν
= 0,

where K is the mean curvature of the boundary, i.e., the sum of the principal curvatures.
See Gazzola, Grunau and Sweers [24] for further details.

3 A general stability theorem

The following condition on Ωε and V (Ωε) will guarantee that H−1
V (Ωε)

is E-compact con-

vergent to H−1
V (Ω) in the sense of Definition 2.8.

7



Definition 3.1 (Condition C) Given open sets Ωε, ε > 0 and Ω in RN and cor-
responding elliptic operators HV (Ωε), HV (Ω) defined on Ωε,Ω respectively, we say that
condition (C) is satisfied if for each ε > 0 there exists an open set Kε ⊂ Ω ∩ Ωε such
that2

lim
ε→0
|Ω \Kε| = 0, (3.2)

and the following conditions are satisfied:

(C1) If vε ∈ V (Ωε) and supε>0QΩε(vε) <∞ then

lim
ε→0
‖vε‖L2(Ωε\Kε) = 0; (3.3)

(C2) For each ε > 0 there exists an operator Tε : V (Ω) −→ V (Ωε) such that for all
fixed ϕ ∈ V (Ω)

(i) lim
ε→0

QKε(Tεϕ− ϕ) = 0,

(ii) lim
ε→0

QΩε\Kε(Tεϕ) = 0,

(iii) sup
ε>0
‖Tεϕ‖L2(Ωε) <∞.

(C3) For each ε > 0 there exists an operator Eε from V (Ωε) to Wm,2(Ω) such that the
set Eε(V (Ωε)) is compactly embedded in L2(Ω) and such that

(i) If vε ∈ V (Ωε) is such that supε>0QΩε(vε) <∞ then lim
ε→0

QKε(Eεvε − vε) = 0;

(ii) sup
ε>0

sup
v∈V (Ωε)
v 6=0

‖Eεv‖Wm,2(Ω)

Q
1/2
Ωε

(v)
<∞;

(iii) If vε ∈ V (Ωε) is such that supε>0QΩε(vε) < ∞ and there exists v ∈ L2(Ω)

such that, possibly passing to a subsequence, we have ‖Eεvε − v‖L2(Ω)
ε→0−→ 0, then

v ∈ V (Ω).

Example 3.4 Consider the simpler case Ω ⊂ Ωε and V (Ω) = Wm,2(Ω), V (Ωε) =
Wm,2(Ωε) for all ε > 0, and assume (2.7) is satisfied. We set Kε = Ω for all ε > 0.
Thus (3.2) is trivially satisfied. Assume that Ω is sufficiently regular to guarantee the
existence of a bounded extension operator from Wm,2(Ω) to Wm,2(RN ). Then condition
(C2) is satisfied: indeed, the extension operator may serve as operator Tε. As far as
the operator Eε is concerned, one can use the restriction operator: in this way, the
compactness of the embedding Wm,2(Ω) ↪→ L2(Ω) allow to conclude that condition (C3)
is satisfied . Thus, in order to verify the validity of condition (C) it just suffices to
check the validity of (C1), which depends on the specific problem under consideration,
see Section 5.

We now prove the following general statement.

2this condition guarantees that ‖Eu‖L2(Ωε) → ‖u‖L2(Ω) which is the basic hypothesis in the theory
of E-convergence and it is an assumption of Proposition 2.9.
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Theorem 3.5 Given open sets Ωε, ε > 0 and Ω in RN and corresponding operators
HV (Ωε), HV (Ω) defined on Ωε,Ω respectively, such that condition (C) is satisfied then

H−1
V (Ωε)

C→ H−1
V (Ω).

Proof. First we prove that H−1
V (Ωε)

EE→ H−1
V (Ω). Let fε ∈ L2(Ωε) be a sequence E-

convergent to f ∈ L2(Ω), i.e.,

lim
ε→0
‖fε − Ef‖L2(Ωε) = 0. (3.6)

Let vε ∈ V (Ωε) be such that
HV (Ωε)vε = fε, (3.7)

and let u ∈ V (Ω) be such that HV (Ω)u = f . We have to prove that vε is E-convergent
to u, i.e.,

lim
ε→0
‖vε − Eu‖L2(Ωε) → 0. (3.8)

We will prove this statement by showing that for any sequence εk → 0 there is a
subsequence ε′k → 0 which satisfies (3.8). Moreover, in order to avoid a complicated
notation with too many indices and subindices, we will keep denoting the sequences
and subsequences by ε.

By (3.7) and the Hölder inequality it follows that

QΩε(vε) = (fε, vε)L2(Ωε) ≤ ‖fε‖L2(Ωε)Q
1/2
Ωε

(vε). (3.9)

Since fε is E-convergent to f , there exists M > 0 such that ‖fε‖L2(Ωε) ≤ M for all
ε > 0. Thus by (3.9) it follows that

sup
ε>0

QΩε(vε) <∞. (3.10)

By condition (C3) (ii), it follows that Eεvε is a bounded sequence in Wm,2(Ω). Accord-
ingly, by the compactness of the embedding Eε(V (Ωε)) ⊂ L2(Ω) and the reflexivity of
the space Wm,2(Ω) there exists ũ ∈ Wm,2(Ω) such that, possibly considering a subse-
quence, Eεvε converges to ũ strongly in L2(Ω) and weakly in Wm,2(Ω) as ε → 0. By
(3.10) and condition (C3) (iii) it follows that ũ ∈ V (Ω). We now prove that ũ = u. Let
ϕ ∈ V (Ω) be fixed. Since the operator Tε takes values in V (Ωε) we can use Tεϕ as a
test function in the weak formulation of the problem in Ωε and obtain

QΩε(vε, Tεϕ) = (fε, Tεϕ), (3.11)

It is easily seen that

QΩε(vε, Tεϕ) = QKε(vε, Tεϕ) +QΩε\Kε(vε, Tεϕ)

= QKε(vε, ϕ) +QKε(vε, Tεϕ− ϕ) +QΩε\Kε(vε, Tεϕ)

= QKε(Eεvε, ϕ) +QKε(vε − Eεvε, ϕ) +QKε(vε, Tεϕ− ϕ) +QΩε\Kε(vε, Tεϕ)

= QΩ(Eεvε, ϕ)−QΩ\Kε(Eεvε, ϕ) +QKε(vε − Eεvε, ϕ) +QKε(vε, Tεϕ− ϕ)

+QΩε\Kε(vε, Tεϕ). (3.12)
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By the boundedness of the coefficients Aαβ, the space (Wm,2(Ω), ‖ · ‖Wm,2(Ω)) is

continuously embedded in (Wm,2(Ω), Q
1/2
Ω (·)). It follows that the sequence Eεvε is

weakly convergent to ũ in (Wm,2(Ω), Q
1/2
Ω (·)), hence

lim
ε→0

QΩ(Eεvε, ϕ) = QΩ(ũ, ϕ). (3.13)

Since QΩ\Kε(Eεvε) is a bounded sequence, ϕ is fixed and limε→0 |Ω \Kε| = 0 it is
easily seen that

lim
ε→0

QΩ\Kε(Eεvε, ϕ) = 0. (3.14)

Since QKε(ϕ) is a bounded sequence, by condition (C3) (i) it follows that

lim
ε→0

QKε(vε − Eεvε, ϕ) = 0. (3.15)

By (3.10) QKε(vε) is a bounded sequence hence by (C2) (i) it follows that

lim
ε→0

QKε(vε, Tεϕ− ϕ) = 0.

Similarly, by (C2) (ii)
lim
ε→0

QΩε\Kε(vε, Tεϕ) = 0. (3.16)

Thus, by (3.12)-(3.16) it follows that

lim
ε→0

QΩε(vε, Tεϕ) = QΩ(ũ, ϕ) (3.17)

Moreover,

(fε, Tεϕ)L2(Ωε) = (fε − Ef, Tεϕ)L2(Ωε) + (Ef, Tεϕ)L2(Ωε). (3.18)

By (3.6) and condition (C2) (iii) we have

lim
ε→0

(fε − Ef, Tεϕ)L2(Ωε) = 0. (3.19)

Furthermore,

|(Ef, Tεϕ)L2(Ωε) − (f, ϕ)L2(Ω)| ≤ |(f, Tεϕ− ϕ)L2(Kε)|
+|(f, Tεϕ)L2((Ω∩Ωε)\Kε)|+ |(f, ϕ)L2(Ω\Kε)|. (3.20)

By condition (C2) (i) the first summond in the right-hand side of (3.20) vanishes as
ε→ 0. Moreover, since |(Ω∩Ωε) \Kε| → 0 as ε→ 0, by condition (C2) (iii) the second
and the third summonds in the right-hand side of (3.20) vanish as ε→ 0. Thus

lim
ε→0

(Ef, Tεϕ)L2(Ωε) = (f, ϕ)L2(Ω). (3.21)

By (3.11), (3.17), (3.18), (3.21) it follows that

QΩ(ũ, ϕ) = (f, ϕ)L2(Ω), ∀ϕ ∈ V (Ω). (3.22)

Since, ũ ∈ V (Ω), we have ũ = u.
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Observe now that

‖vε − Eu‖2L2(Ωε)
= ‖vε‖2L2(Ωε\Ω) + ‖vε − u‖2L2(Ωε∩Ω)

= ‖vε‖2L2(Ωε\Ω) + ‖vε − u‖2L2((Ωε∩Ω)\Kε) + ‖vε − u‖2L2(Kε)
.(3.23)

Note that

‖vε − u‖2L2(Kε)
≤ ‖Eεvε − u‖2L2(Kε)

+ ‖Eεvε − vε‖2L2(Kε)

≤ ‖Eεvε − u‖2L2(Ω) + ‖Eεvε − vε‖2L2(Kε)
(3.24)

Moreover,
‖vε‖2L2(Ωε\Ω) ≤ ‖vε‖

2
L2(Ωε\Kε), (3.25)

and
‖vε − u‖2L2((Ωε∩Ω)\Kε) ≤ ‖vε‖

2
L2(Ωε\Kε) + ‖u‖2L2(Ω\Kε). (3.26)

Thus, by (C1), (C3) (i) and (3.23)-(3.26) it follows that (3.8) holds. Thus, H−1
V (Ωε)

is

E-convergent to H−1
V (Ω) as ε→ 0.

Exactly the same argument can be used to prove that if f̂ε ∈ L2(Ωε) is such that

sup
ε>0
‖f̂ε‖L2(Ωε) <∞

and v̂ε ∈ V (Ωε) is such that HV (Ωε)v̂ε = f̂ε then there exist û ∈ L2(Ω) such that,
possibly considering a subsequence,

lim
ε→0
‖v̂ε − E û‖2L2(Ωε)

= 0. (3.27)

This implies that H−1
V (Ωε)

is E-compact convergent to H−1
V (Ω) as ε→ 0. 2

4 Dirichlet boundary conditions and Mosco convergence

In this section we consider the operator (2.6) on a bounded open set Ω in RN , subject
to Dirichlet boundary conditions

u =
∂u

∂ν
= . . .

∂m−1u

∂νm−1
= 0, on ∂Ω. (4.1)

This has to be understood in the general frame discussed in Section 2 as follows.
Imposing Dirichlet boundary conditions to the operator L on Ω means that the

domain V (Ω) of the corresponding quadratic form QΩ is given by

V (Ω) = Wm,2
0 (Ω).

This will be understood throughout this section. Here we assume that the coefficients
Aαβ satisfy the uniform ellipticity condition (2.7). We recall that if Ω is bounded then

the Sobolev space Wm,2
0 (Ω) is compactly embedded in L2(Ω). Thus, as it is explained

in Section 2, the operator H
Wm,2

0 (Ω)
is well-defined and has compact resolvent.

The spectral stability of higher order operators subject to Dirichlet boundary con-
ditions on variable domains was discussed in Babuska and Vyborny [8] where sufficient
conditions ensuring stability were given. Those conditions are nowadays understood in
the frame of the notion of Mosco convergence which we now recall.
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Definition 4.2 Let D be a bounded open set in RN . Let Ωε, ε > 0 be a family of
open sets contained in D. Let m ∈ N and Ω be an open set in D. We say that the
spaces Wm,2

0 (Ωε) converge in the sense of Mosco to the space Wm,2
0 (Ω) as ε→ 0 if the

following two conditions are satisfied:

(M1) For any ϕ ∈Wm,2
0 (Ω) and ε > 0 there exists ϕε ∈Wm,2

0 (Ωε) such that ϕε → ϕ in

Wm,2
0 (D) as ε→ 0.

(M2) If v ∈ Wm,2
0 (D) and there exists a sequence vεn ∈ W

m,2
0 (Ωεn) such that vεn ⇀ v

in Wm,2(D) as εn → 0, then v ∈Wm,2
0 (Ω).

Note that in the previous definition it is understood that functions ϕ,ϕε, vεn are ex-
tended by zero outside their domain of definition. Moreover, the condition v ∈Wm,2

0 (Ω)
in (M2) has to be understood in the sense that the function v can be approximated in
Wm,2(D) by a sequence of C∞-functions with compact support in Ω.

We prove the following expected result.

Theorem 4.3 The Mosco convergence of the spaces Wm,2
0 (Ωε) to Wm,2

0 (Ω) as ε → 0
implies the validity of condition (C), hence the E-compact convergence of the operators
H−1

Wm,2
0 (Ωε)

to the operator H−1

Wm,2
0 (Ω)

.

Proof. Assume that D, Ωε and Ω are as in Definition 4.2. We set Kε = Ωε ∩ Ω.
We divide the proof in several steps.

Step 1 We prove that condition (3.2) hold. Using standard properties of the
Lebesgue measure, to prove (3.2) it is enough to show that for any compact set K ⊂ Ω,
we have |K \ Ωε| → 0. But, since K is compact and K ⊂ Ω, we have the existence of
a function ϕ ∈ C∞0 (Ω) with ϕ ≡ 1 in K. From (M1) we have a sequence of functions
ϕε ∈ Wm,2

0 (Ωε), such that ϕε → ϕ in Wm,2(D) and in particular in L1(D). But this
implies that

|{x ∈ D : |ϕε(x)− ϕ(x)| > 1/2}| → 0

and therefore, since in K \ Ωε we have ϕ(x) − ϕε(x) = 1, then K \ Ωε ⊂ {x ∈ D :
|ϕε(x)− ϕ(x)| > 1/2} and therefore |K \ Ωε| → 0.

Step 2 We prove that condition (C1) is satisfied. Assume that vε ∈ Wm,2
0 (Ωε)

are as in (C1) and assume directly that vε are extended by zero outside Ωε. Since
vε ∈ Wm,2

0 (D), by the Sobolev’s Embedding Theorem vε ∈ Lp(D) for some p > 2.
Thus,

‖vε‖L2(Ω\Kε) ≤ |Ω \Kε|
1
2
− 1
p ‖‖vε‖Lp(Ω\Kε) ≤ c|Ω \Kε|

1
2
− 1
p

where c > 0 is a constant independent of ε. This, combined with (3.2) implies that
‖vε‖L2(Ω\Kε) → 0 as ε → 0. Thus, in order to prove that condition (C1) is satisfied, it
suffices to prove that ‖vε‖L2(Ωε\Ω) → 0 as ε→ 0. Assume by contradiction that this is
not the case. Then there exists a subsequence vεn such that ‖vεn‖L2(Ωεn\Ω) → c > 0.

Moreover, possibly passing to a subsequence, by (M2) there exists v ∈ Wm,2
0 (Ω) such

that vεn converges to v in L2(D). In particular, it follows that ‖v‖L2(D\Ω) = c which

contradicts the fact that v ∈Wm,2
0 (Ω).

Step 3 We prove that the validity of (M1) implies the validity of (C2). For any
ϕ ∈Wm,2

0 (Ω), we set Tεϕ = ϕε where ϕε is as in (M1). Obviously, we have that

QKε(Tεϕ− ϕ) ≤ c‖ϕε − ϕ‖Wm,2
0 (D)

,
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where c > 0 is independent of ε. Since ϕε → ϕ in Wm,2
0 (D), follows that condition (C2)

(i) is satisfied. We now prove that condition (C2) (ii) is satisfied. We note that there
exists a constant c > 0 independent of ε such that

QΩε\Kε(Tεϕ) ≤ c‖ϕε‖Wm,2(Ωε\Kε) ≤ c‖ϕε − ϕ‖Wm,2(Ωε\Kε)

+c‖ϕ‖Wm,2(Ωε\Kε) = ‖ϕε − ϕ‖Wm,2(Ωε\Kε) + c‖ϕ‖Wm,2(Ω\Kε). (4.4)

It is now clear that by (M1) and the absolute continuity of Lebesgue integrals, the
right-hand side of (4.4) goes to zero as ε → 0, hence condition (C2) (ii) is satisfied.
Condition (C2) (iii) is trivial.

Step 4 We prove that the validity of (M2) implies the validity of (C3). We set
Eε(v) = Ext0v where Ext0 is the extension-by-zero operator. Clearly, conditions (C3)
(i), (ii) are trivially satisfied. We now consider condition (C3) (iii). Let vε be as
in (C2) (iii). Then Ext0vε is a bounded sequence in Wm,2

0 (D). Thus, there exists

v ∈ Wm,2
0 (D) such that, possibly passing to a subsequence, Ext0vε is convergent to v

strongly in L2(D) and weakly in Wm,2
0 (D). By condition (M2), we immediately have

that v ∈Wm,2
0 (Ω), hence condition (C2) (iii) is also satisfied.

Remark 4.5 Sufficient conditions ensuring the Mosco convergence of spaces Wm,2
0 (Ωε)

to Wm,2
0 (Ω) are well-known. We refer to Bucur and Buttazzo [6] and Henrot [27] for

a detailed discussion in the case m = 1. We note that such conditions typically involve
geometric notions describing the vicinity of sets (for example, the Hausdorff distance)
as well as uniform regularity or topological assumptions on the domains. Some of the
conditions known in the case m = 1 easily extends to the case m > 1, as in the case
of the compact convergence of sets. For example, if Ωε ⊂ Ω is a sequence of open sets
compact convergent to Ω as ε→ 0 (i.e., for any compact set K ⊂ Ω there exists εK > 0
such that K ⊂ Ωε for all 0 < ε < εK) then one can prove that the spaces Wm,2

0 (Ωε)

converge in the sense of Mosco to Wm,2
0 (Ω) as ε → 0. See Babuska and Vyborny [8]

for more information.

5 Neumann boundary conditions

In this section we consider the operator (2.6) subject to Neumann boundary conditions
on bounded open sets Ω in RN . This has to be understood in the general frame discussed
in Section 2 as follows: by Neumann boundary conditions we mean that the domain
V (Ω) of the corresponding quadratic form QΩ is given by

V (Ω) = Wm,2(Ω),

and this will be understood throughout this section. Here we assume that the coeffi-
cients Aαβ satisfy the uniform ellipticity condition (2.7).

It is well known that both the smoothness of the domains and the kind of per-
turbations that we are allowed when dealing with operators with Neumann boundary
conditions is more restrictive than in the Dirichlet case. An appropriate setting for this
issue is clarified with the notion of atlas, as for instance in [12, Definition 2.4]. For the
sake of completeness and clarity, let us include here the definition.

For any given set V ∈ RN and δ > 0 we denote by Vδ the set {x ∈ RN : d(x, ∂Ω) >
δ}. Moreover, by a cuboid we mean any rotation of a rectangular parallelepiped in RN .
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Definition 5.1 [Definition 2.4, [12]] Let ρ > 0, s, s′ ∈ N with s′ < s. Let also
{Vj}sj=1 be a family of bounded open cuboids and {rj}sj=1 be a family of rotations in

RN . We say that A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) is an atlas in RN with parameters

ρ, s, s′, {Vj}sj=1, {rj}sj=1, briefly an atlas in RN . Moreover, we consider the family of

all open sets Ω ⊂ RN satisfying the following:
i) Ω ⊂ ∪sj=1(Vj)ρ and (Vj)ρ ∩ Ω 6= ∅
ii) Vj ∩ ∂Ω 6= ∅ for j = 1, . . . , s′ and Vj ∩ ∂Ω = ∅ for s′ < j ≤ s
iii) for j = 1, . . . , s we have

rj(Vj) = {x ∈ RN : aij < xi < bij , i = 1, . . . , N}, j = 1, . . . , s

rj(Vj ∩ Ω) = {x ∈ RN : aNj < xN < gj(x̄)}, j = 1, . . . , s′

where x̄ = (x1, . . . , xN−1), Wj = {x ∈ RN−1 : aij < xi < bij , i = 1, . . . , N − 1} and the
functions gj ∈ Ck,γ(Wj) for j = 1, . . . , s′, with k ∈ N ∪ {0} and 0 ≤ γ ≤ 1. Moreover,
for j = 1, . . . , s′ we have aNj + ρ ≤ gj(x̄) ≤ bNj − ρ, for all x̄ ∈Wj.

We say that an open set Ω is of class Ck,γM (A) if all the functions gj, j = 1, . . . , s′

defined above are of class Ck,γ(Wj) and ‖gj‖Ck,γ(Wj) ≤ M . We say that an open set

Ω is of class Ck,γ(A) if it is of class Ck,γM (A) for some M > 0. Also, we say that an

open set Ω is of class Ck,γ if it is of class Ck,γM (A) for some atlas A and some M > 0.
Finally, we denote by Ck the class Ck,0 for k ∈ N ∪ {0}.

We recall that if Ω is a C0 bounded open set then the Sobolev space Wm,2(Ω) is
compactly embedded in L2(Ω), see e.g., Burenkov [11]. Thus, as it is explained in
Section 2, the operator HWm,2(Ω) is well-defined and has compact resolvent.

In this section we discuss the E-compact convergence of the operators H−1
Wm,2(Ωε)

on families of open sets Ωε, ε > 0. The following theorem is in fact a generalization to
higher order operators of [1], [3, Prop. 2.3].

Theorem 5.2 Let A be an atlas in RN , as in Definition 5.1. Let Ω be a bounded open
set in RN of class C0,1(A) and Ωε, with ε > 0, be bounded open sets in RN of class C0.
Let M > 0. Assume that for each ε > 0 there exists an open set Kε ⊂ Ω ∩ Ωε of class
C0,1
M (A) satisfying (3.2) and one of the following two equivalent conditions:

i) If vε ∈Wm,2(Ωε) and sup
ε>0
‖vε‖Wm,2(Ωε) <∞ then lim

ε→0
‖vε‖L2(Ωε\Kε) = 0 ;

ii) lim
ε→0

τε =∞, where

τε = inf
v∈Wm,2(Ωε)\{0}

v=0 on Kε

QΩε(v)

‖v‖2
L2(Ωε)

.

Then we have lim
ε→0
|Ωε \ Kε| = 0 and condition (C) is satisfied. Hence, H−1

Wm,2(Ωε)

C→

H−1
Wm,2(Ω)

.

Proof. First we note that conditions i) and ii) both imply that lim
ε→0
|Ωε \Kε| = 0.

The proof of this is very similar as the one from [3, Prop. 2.3] and we skip it.
That i) implies ii) is very simple. Indeed, if τεk is bounded for some sequence εk → 0,

then one can find functions vεk ∈ Wm,2(Ωεk) with ‖vεk‖L2(Ωεk\Kεk ) = 1 and QΩεk
(vεk)

bounded. Hence, ‖vεk‖Wm,2(Ωεk ) is a bounded sequence, which contradicts i).
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We now prove that ii) implies i). If i) does not hold, one can find a sequence εk → 0
and functions vεk ∈Wm,2(Ωεk) with supk∈N ‖vεk‖Wm,2(Ωεk ) <∞ and ‖vεk‖L2(Ωεk\Kεk ) =

1. Since Kε is of class C0,1
M (A) for all ε > 0, there exists a bounded linear extension

operator ExtKε : Wm,2(Kε)→Wm,2(RN ) with a uniformly bounded norm, i.e.,

sup
ε>0

∥∥ExtKε
∥∥
Wm,2(Kε)→Wm,2(RN )

<∞, (5.3)

see Burenkov [11, Thm. 3, Chp. 6] or the classical Stein’s book [36].
We set Vεk = ExtKε(vεk |Kεk

). By using the Sobolev’s Embedding Theorem and

(5.3) one can prove as in [3] that ‖Vεk‖L2(Ωεk\Kεk ) → 0. Consider now the func-

tion wεk = Vεk − vεk . It is clear that wεk = 0 on Kεk , supk∈NQΩεk
(wεk) < ∞ and

lim infk→∞ ‖wεk‖L2(Ωεk ) > 0. It follows that supk∈N τεk <∞ which contradicts ii).

It remains to prove that condition i) implies that condition (C) is satisfied. By (2.7)

it follows that the norm Q
1/2
Ω is equivalent to the Sobolev norm (2.1). Thus condition

(i) implies the validity of condition (C1).
Since Ω is of class C0,1 there exists a bounded linear extension operator ExtΩ :

Wm,2(Ω)→Wm,2(RN ). For every ε > 0, let Tε be the operator ofWm,2(Ω) toWm,2(Ωε)
defined by Tεϕ = (ExtΩϕ)|Ωε , for all ϕ ∈ Wm,2(Ω). Since Tεϕ = ϕ on Kε and Tεϕ =
ExtΩϕ on Ωε for all ϕ ∈Wm,2(Ω), and limε→0 |Ωε \Kε| = 0, it follows that Tε satisfies
condition (C2).

For every ε > 0, let Eε be the operator of Wm,2(Ωε) to Wm,2(Ω) defined by Eεu =
ExtKε(u|Kε), for all u ∈ Wm,2(Ωε). It is obvious that condition (C3) (i) is satisfied.
Moreover, by (5.3) also condition (C3) (ii) is satisfied. We now prove that (C3) (iii)
is satisfies as well. Let vε ∈ Wm,2(Ωε) and v ∈ L2(Ω) be as in (C3) (iii). Since
‖vε‖Wm,2(Ωε) is uniformly bounded, by (5.3) it follows that ExtKε(u|Kε) is uniformly

bounded in Wm,2(RN ). By the reflexivity of Wm,2(RN ) there exists ṽ ∈ Wm,2(RN )
such that vε converges weekly to ṽ in Wm,2(RN ) as ε→ 0. Thus, Eεvε converges weekly
to ṽ in L2(Ω) as ε → 0 hence ṽ = v and v ∈ Wm,2(Ω). Thus, also condition (C3) (iii)
is satisfied. The proof is complete. 2

We have the following result, which considers the particular case where Ω ⊂ Ωε.

Corollary 5.4 Let Ω be a bounded open set in RN of class C0,1 and Ωε, with ε > 0,
be bounded open sets in RN of class C0 with Ω ⊂ Ωε. Assume that one of the following
two equivalent conditions is satisfied

i) If vε ∈Wm,2(Ωε) and supε>0 ‖vε‖Wm,2(Ωε) <∞ then limε→0 ‖vε‖L2(Ωε\Ω) = 0.

ii) lim
ε→0

inf
v∈Wm,2(Ωε)\{0}

u=0 on Ω

QΩε(v)

‖v‖2
L2(Ωε)

=∞.

Then we have limε→0 |Ωε \ Ω| = 0 and condition (C) is satisfied. Hence, H−1
Wm,2(Ωε)

is E-compact convergent to H−1
Wm,2(Ω)

.

Proof. The proof immediately follows by setting Kε = Ω for all ε > 0 and applying
Theorem 5.2. 2

We also can prove a simple criterion ensuring spectral stability for Neumann bound-
ary conditions, which generalizes the condition given in Arrieta and Carvalho [3, § 5.1].
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This criterion can be easily formulated in terms of the notion of the atlas distance d
(m)
A

which is introduced in [13].

Definition 5.5 (Atlas distance) Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in

RN . For all Ω1,Ω2 ∈ Cm(A) we set

d
(m)
A (Ω1,Ω2) = max

j=1,...,s′
sup

0≤|α|≤m
sup

(x̄,xN )∈rj(Vj)
|Dαg1j(x̄)−Dαg2j(x̄)| , (5.6)

where g1j, g2j respectively, are the functions describing the boundaries of Ω1,Ω2 respec-
tively, as in Definition 5.1.

Moreover, we set dA = d
(0)
A and we called dA ‘atlas distance’.

The atlas distance clearly depends on the atlas but has the advantage of being
easily computable. In the case of open sets of class C0,1

M , dA is equivalent to the usual
Hausdorff distance. Amongst the basic properties of dA, it is also worth mentioning
that (C(A), dA) is a complete metric space. See [13] for more information.

Then we can prove the following

Theorem 5.7 Let A be an atlas in RN and Ω be a bounded open set of class C0,1(A).
Let Ωε, ε > 0, be bounded open sets of class C(A) such that

lim
ε→0

dA(Ωε,Ω) = 0.

Then condition (C) is satisfied, hence H−1
Wm,2(Ωε)

C→ H−1
Wm,2(Ω)

.

Proof. Let Kε be bounded open sets of class C0,1
M (A) with M > 0 independent

of ε, such that Kε ⊂ Ω ∩ Ωε and such that dA(Kε,Ωε) ≤ 2dA(Ωε,Ω). We denote by
gΩε,j and gKε,j the functions describing the boundaries of Ωε and Kε respectively, as in
Definition 5.1.

Recall now that if a function f belongs to a Sobolev space the type Wm,2(a, b)
where (a, b) is a bounded real interval and f (i)(a) = 0 for any i = 0, . . . ,m− 1 then the
following Poincaré inequality holds

‖f‖L2(a,b) ≤ C(b− a)m‖f (m)‖L2(a,b), (5.8)

where C > 0 depends only on m.
Let v ∈ Wm,2(Ωε) be such that v|Kε = 0. Then by applying Fubini-Tonelli’s Theo-

rem, using (5.8) and the notation from Definition 5.1, we have

‖v‖2L2(Ωε\Kε) ≤
s′∑
j=1

∫
Wj

∫ gΩε,j(x̄)

gKε,j(x̄)
|v(x̄, xN )|2dxNdx̄

≤ c

s′∑
j=1

∫
Wj

|gΩε,j(x̄)− gKε,j(x̄)|2m
∫ gΩε,j(x̄)

gKε,j(x̄)

∣∣∣∣∂mv∂xmN

∣∣∣∣2 dxndx̄
≤ cd2m

A (Kε,Ωε)‖v‖2Wm,2(Ωε)
, (5.9)

by which we immediately deduce that limε→0 τε = ∞, where τε is defined in Theo-
rem 5.2. Thus, Theorem 5.2 allows to conclude the proof. 2

Remark 5.10 We note that in Theorem 5.7 the assumptions on the open sets Ωε are
quite weak. Indeed, it is not required that the sets Ωε belong to a uniform Lipschitz
class and it is only required that they are of class C(A). In particular, the modulus of
continuity of the functions describing their boundaries may blow up as ε→ 0.
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6 Intermediate boundary conditions

In this section we consider the operator (2.6) subject to intermediate boundary con-
ditions on bounded open sets Ω in RN with smooth boundaries. By intermediate
boundary conditions we mean that the domain V (Ω) of the corresponding quadratic
form QΩ is given by

V (Ω) = Wm,2(Ω) ∩W k,2
0 (Ω), (6.1)

with m ≥ 2, where k ∈ N, 1 ≤ k < m, is fixed. This will be understood throughout
this section. By well-known estimates for intermediate derivatives (see Burenkov [11,
p. 160]) it follows that V (Ω) is a closed subspace of Wm,2(Ω).

Here we assume that the coefficients Aαβ are fixed and satisfy the uniform ellipticity
condition (2.7). Thus the operator HV (Ω) is well-defined and has compact resolvent
since V (Ω) is compactly embedded in L2(Ω).

In this section we discuss the E-convergence of the operator H−1
V (Ωε)

on suitable
families of smooth open sets Ωε, ε > 0. Our analysis includes the case of open sets Ωε

with oscillating boundaries.
We consider, as in Definition 5.1, a fixed atlas A and constant M > 0 and assume

Ω ∈ CmM (A). We will also consider that Ωε ∈ CmMε
(A) for some constants Mε not

necessarily uniformly bounded in ε. To simplify the proofs of the results, we will
consider that the perturbation of the boundary is localized in just one of the cuboids
Vi for some i = 1, . . . , s′, that is, one of the cuboids which touch the boundary. We
refer to Corollary 6.18 for a general statement when the perturbation acts not in just
a single cuboid.

Therefore, let us denote the cuboid by V (we will drop the subindex) and hence
we will assume that Ω \ Vρ = Ωε \ Vρ, that is, the perturbation is localized in the
interior of V . Without loss of generality, we may assume that V = W × (a, b), where
W = {x ∈ RN−1 : aj < xj < bj , j = 1, . . . , N − 1}. Moreover, V ∩ Ω = {(x̄, xN ) ∈
W×]a, b[ : a < xN < g(x̄)} and V ∩Ωε = {(x̄, xN ) ∈W×]a, b[ : a < xN < gε(x̄)}. The
functions g and gε define the boundary of Ω and Ωε in V and as in Definition 5.1 we
assume that a+ρ < g, gε < b−ρ, g, gε ∈ Cm(W ) with ‖g‖Cm(W ) ≤M , ‖gε‖Cm(W ) ≤Mε.

The following lemma provides a sufficient condition for the E-compact convergence
of H−1

V (Ωε)
to H−1

V (Ω). As usual, ‖ · ‖∞ denotes the L∞-norm.

Lemma 6.2 With the notation above and assuming that for every ε > 0 there exists
κε > 0 such that

(i) κε > ‖gε − g‖∞, ∀ ε > 0

(ii) limε→0 κε = 0

(iii) limε→0
‖Dβ(gε−g)‖∞

κ
m−|β|− 1

2
ε

= 0, ∀ β ∈ NN with |β| ≤ m.

Then condition (C) is satisfied, hence H−1
V (Ωε)

C→ H−1
V (Ω).

Proof. Our argument is based on the construction of a suitable diffeomorphism
from Ω̄ε onto Ω̄ which coincides with the identity outside Vρ. Thus, since Ωε\Vρ = Ω\Vρ
for all ε > 0, we can carry out our construction in V and assume directly that Ω = Ω∩V
and Ωε = Ωε ∩ V . Hence, Ω = {(x̄, xN ) ∈ W×]a, b[ : a < xN < g(x̄)} and Ωε =
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{(x̄, xN ) ∈ W×]a, b[ : a < xN < gε(x̄)} where W is defined above. Let3 k̂ > 2(m+ 1).
We set kε = k̂κε and g̃ε = gε − kε, Kε = {(x̄, xN ) ∈ W×]a, b[ : a < xN < g̃ε(x̄)}. Note
that by (i), (ii), ∅ 6= Kε ⊂ Ω ∩ Ωε for all ε > 0 sufficiently small. Moreover, by (ii)
condition (3.2) is satisfied.

Throughout the proof, we will denote by C a generic constant which will be inde-
pendent of ε and all the functions involved. This constant may change from line to line.
If at some point we want to distinguish some constant we will use another notation and
make this clear.

We now prove that condition (C1) is satisfied. Let vε, ε > 0, be as in condition (C1).
We will need the one dimensional embedding estimates ‖f‖L∞(a,b) ≤ K‖f‖W 1,2(a,b)

where the constant K = K(d) is uniformly bounded for |b − a| ≥ d (see, e.g., Bu-
renkov [11]). Hence, by Tonelli’s Theorem, and applying this last estimate to the
function vε(x̄, ·) in the interval (a, gε(x̄)), we get∫

Ωε\Kε
|vε|2dx =

∫
W

∫ gε(x̄)

g̃ε(x̄)
|vε(x̄, xN )|2dxndx̄

≤ C
∫
W
|g̃ε(x̄)− gε(x̄)|‖vε(x̄, ·)‖2W 1,2(a,gε(x̄))dx̄

≤ C‖g̃ε − gε‖L∞(W )‖vε‖2W 1,2(Ωε)
≤ Cκ2

ε QΩε(vε)
ε→0−→ 0.

(6.3)

By (6.3) the validity of condition (C1) follows.
We now prove that condition (C2) is satisfied. Let Φε : Ω̄ε → Ω̄ be the map defined

by Φε(x̄, xN ) = (x̄, xN − hε(x̄, xN )) for all (x̄, xN ) ∈ Ω̄ε where

hε(x̄, xN ) =


0, if a ≤ xN ≤ g̃ε(x̄),

(gε(x̄)− g(x̄))
(

xN−g̃ε(x̄)
gε(x̄)−g̃ε(x̄)

)m+1
, if g̃ε(x̄) < xN ≤ gε(x̄) .

(6.4)

Geometrically speaking, the map Φε transforms the “vertical segment” lεx̄ = {(x̄, xN ) :
a < xN < gε(x̄)} to the segment lx̄ = {(x̄, xN ) : a < xN < g(x̄)}, leaving invariant the
part of the segment with a < xN < g̃ε(x̄).

Note that for ε fixed the transformation Φε is a diffeomorphism of class Cm from
Ω̄ε onto Ω̄. The Cm norm of Φε will not be bounded in general for m ≥ 2 as ε → 0,
but by the choice of k̂ and having in mind (i) (ii) and (iii), it follows that

C−1 ≤ |detDΦε| ≤ C. (6.5)

To see this, just note that |detDΦε| = |1− ∂xNhε|.
In order to estimate the derivatives (up to order m) of the transformation Φε, we

need to study the derivatives of the function hε. By the Leibniz formula we have

Dαhε(x) =
∑

0≤γ≤α

(
α

γ

)
Dγ(gε(x̄)− g(x̄))Dα−γ

(
xN − g̃ε(x̄)

gε(x̄)− g̃ε(x̄)

)m+1

,

for all (x̄, xN ) ∈W×]a, b[ with g̃ε(x̄) < xN < gε(x̄). By standard calculus, it is easy to
check that∣∣∣∣∣Dα−γ

(
xN − g̃ε(x̄)

gε(x̄)− g̃ε(x̄)

)m+1
∣∣∣∣∣ ≤ C

|gε(x̄)− g̃ε(x̄)||α|−|γ|
≤ C

κ
|α|−|γ|
ε

, (6.6)

3the value of k̂ does not play any significant role and is used only to prove (6.5)
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hence,

‖Dαhε‖∞ ≤ C
∑

0≤γ≤α

‖Dγ(gε − g)‖∞
κ
|α|−|γ|
ε

(6.7)

for all ε > 0 sufficiently small.
Let Tε be the map from V (Ω) to V (Ωε) defined by

Tεϕ = ϕ ◦ Φε,

for all ϕ ∈ V (Ω). Note that Tε is well-defined since Φε is a diffeomorphism of class Cm.
Condition (C2) (i) is immediately satisfied since Tεϕ = ϕ on Kε for all ϕ ∈ V (Ω).

We now prove that condition (C2) (ii) is satisfied. Let ϕ ∈ V (Ω). By the chain rule,
for any multindex α with |α| = m, we have

Dα(ϕ(Φε(x))) =
∑

1≤|β|≤m

Dβϕ(Φε(x))pαm,β(Φε) (6.8)

where pαm,β(Φε) is a homogeneous polynomial of degree |β| in derivatives of Φε of order
not exceeding m − |β| + 1, and coefficients depending on α but not depending on ε.
Since Φε(x) = x−(0, hε(x)), then a derivative of Φε of order |β| is either constantly 1 or
0 or a derivative or hε of order les or equal than |β|. Then pαm,β(Φε) is a polynomial of
degree less or equal than |β| in the derivatives of hε of order not exceeding m− |β|+ 1.

In particular, using (6.7) this implies that

‖pαm,β(Φε)‖∞ ≤ C

 ∑
0≤|γ|≤m−|β|+1

‖Dγ(gε − g)‖∞
κ
m−|β|+1−|γ|
ε

+ 1

|β|

Note that, in particular if |β| = 1 then

‖pαm,β(Φε)‖∞ ≤ C

 ∑
0≤|γ|≤m

‖Dγ(gε − g)‖∞
κ
m−|γ|
ε

+ 1

 = o(1)κ−1/2
ε , (6.9)

where, as it is customary, we denote by o(1) a function which goes to 0 as ε→ 0.
If 2 ≤ |β| ≤ m, we have

‖pαm,β(Φε)‖∞ ≤ C

 ∑
0≤|γ|≤m−1

‖Dγ(gε − g)‖∞
κ
m−1−|γ|
ε

+ 1

m

≤ C (6.10)

where we have used hypothesis (iii).
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Hence, we have

QΩε\Kε(Tε(ϕ)) ≤
∫

Ωε\Kε
|ϕ(Φε)|2dx+ C

∑
|α|=m

∫
Ωε\Kε

|Dα(ϕ(Φε))|2dx

≤ C
∫

Ω\Kε
|ϕ|2dx+ C

∑
|α|=m

1≤|β|≤m

∫
Ωε\Kε

|Dβϕ(Φε(x))pαm,β(Φε)|2dx

≤ C
∫

Ω\Kε
|ϕ|2dx+ C

∑
|α|=m

1≤|β|≤m

‖pαm,β(Φε)‖2∞
∫

Ωε\Kε
|Dβϕ(Φε(x))|2dx

≤ C
∫

Ω\Kε
|ϕ|2dx+ C

∑
|α|=m

1≤|β|≤m

‖pαm,β(Φε)‖2∞ ‖ϕ‖2W |β|,2(Ω\Kε). (6.11)

Notice that since ϕ ∈Wm,2(Ω) is a fixed function and |Ω \Kε| → 0, then

‖ϕ‖Wm,2(Ω\Kε)
ε→0−→ 0 (6.12)

Also, notice that since ϕ ∈ Wm,2(Ω) ↪→ W 2,2(Ω), we have that for all i = 1, . . . , N ,
∇ϕ ∈ W 1,2(Ω). Therefore, ∇ϕ(x̄, ·) ∈ W 1,2(a, g(x̄)) ↪→ L∞(a, g(x̄)) a.e. x̄ ∈ W . With
a similar argument as the one we use to show (6.3), we have

‖ϕ‖2W 1,2(Ω\Kε) ≤ C‖g̃ε − g‖∞‖ϕ‖
2
W 2,2(Ω) ≤ Cκε. (6.13)

Hence, from (6.12) we have that the first term in (6.11) goes to 0. Moreover, for
the second term in (6.11) we consider the sum for |β| = 1 and 2 < |β| ≤ m separated,
apply (6.9) and (6.10) to obtain∑
|α|=m

1≤|β|≤m

‖pαm,β(Φε)‖2∞ ‖ϕ‖2W |β|,2(Ω\Kε) ≤ o(1)κ−1
ε ‖ϕ‖2W 1,2(Ω\Kε) + C‖ϕ‖2Wm,2(Ω\Kε)

ε→0−→ 0

where we use (6.12) and (6.13). This shows that (C2) (ii) is satisfied.
Condition (C2) (iii) is trivial.
We now prove that condition (C3) is satisfied. By condition (iii) it follows that

‖∇gε‖∞ is uniformly bounded for ε sufficiently small (recall that m ≥ 2). Thus the
open sets Ωε belong to the same class C1

M (A) for a suitable fixed M > 0. Hence, there
exists a bounded linear extension operator ExtΩε from Wm,2(Ωε) to Wm,2(RN ) such
that

sup
ε>0

∥∥ExtΩε

∥∥
Wm,2(Ωε)→Wm,2(RN )

<∞. (6.14)

We set Eεu = (ExtΩεu)|Ω for all u ∈ V (Ωε). It is straightforward that Eε satisfies con-
ditions (C3) (i), (ii). We now prove that condition (C3) (iii) is satisfied. Let vε, ε > 0,
and v be as in condition (C3) (iii). Since Eεvε is bounded in Wm,2(Ω) and Wm,2(Ω) is
compactly embedded in L2(Ω), it follows that there exists ṽ ∈ Wm,2(Ω) such that, by
possibly considering a subsequence, vε converges weakly to ṽ in Wm,2(Ω) and strongly
in L2(Ω) as ε → 0. It follows that v = ṽ, hence v ∈ Wm,2(Ω). It remains to prove

that ṽ ∈ W k,2
0 (Ω). To do so it suffices use the extension-by-zero operator E . Indeed,

E(vε) ∈W k,2
0 (U) where U is a bounded open set containing all sets Ωε and Ω. Since Evε
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is bounded in W k,2
0 (U) and W k,2

0 (U) is compactly embedded in L2(U) it follows that

there exists v̂ ∈W k,2
0 (Ω) such that by possibly considering a subsequence vε converges

weakly to v̂ in W k,2
0 (U) and strongly in L2(U) as ε→ 0. Clearly, v̂ vanishes outside Ω,

hence v̂ ∈W k,2
0 (Ω). Obviously, v̂ = v in Ω. The proof is complete. 2

Remark 6.15 It is not difficult to see that the fact that the set W is an (N − 1)-
dimensional cuboid of the form W = {x ∈ RN−1 : aj < xj < bj , j = 1, . . . , N−1} is not
essential at all in the proof of Lemma 6.2. As a matter of fact, exactly the same proof
works if we consider a general smooth, say piecewise C1, set W and V the cylinder of
base W that is V = W × (a, b).

Remark 6.16 By the classical Gagliardo-Nirenberg interpolation inequality ‖Dβf‖∞ ≤
C(
∑
|α|=m ‖Dαf‖∞)|β|/m‖f‖1−|β|/m∞ (cf. e.g., [32, p. 125]), it turns out that in order

to verify condition (iii) in Lemma 6.2, it suffices to verify it for |β| = 0 and |β| = m.

We can deduce now the following,

Proposition 6.17 With the notations above if ‖gε − g‖∞
ε→0−→ 0 and if

sup
|α|=m

{‖gε − g‖
1

2m−1
∞ ‖Dαgε −Dαg‖∞}

ε→0−→ 0,

then condition (C) is satisfied. Hence H−1
V (Ωε)

C→ H−1
V (Ω).

Proof. Let us denote by δε > 0 a sequence such that sup|α|=m{‖gε−g‖
1

2m−1
∞ ‖Dαgε−

Dαg‖∞} ≤ δε
ε→0−→ 0 and define

ρε = max{δε, ‖gε − g‖
1

2m−1
∞ } ε→0−→ 0

Let us choose

κε =
‖gε − g‖

2
2m−1
∞

ρε

and assume directly that κε 6= 0. Then, since 2/(2m − 1) < 1, ‖gε − g‖∞ → 0 and

ρε
ε→0−→ 0, for ε small enough we have

‖gε − g‖∞ < ‖gε − g‖
2

2m−1
∞ < κε ≤ ‖gε − g‖

1
2m−1
∞

ε→0−→ 0

and therefore hypothesis i) and ii) from Lemma 6.2 hold.
Moreover, with the definition of κε, δε and ρε and noting that ρε ≥ δε, we have

sup
|α|=m

{κ1/2
ε ‖Dαgε −Dαg‖∞} ≤ ρ−1/2

ε δε ≤ δ1/2
ε

ε→0−→ 0

Using now Remark 6.16 we can easily show that iii) from Lemma 6.2 holds and the
proposition follows. 2

In case the perturbation does not act only over one cuboid, we can also prove the
following result with the aid of a partition of unity subordinated to the family of cuboids
{Vi}si=1. We will denote the functions that define the boundary of Ω and Ωε in Vi for
all i = 1, . . . , s′ by gi and gε,i respectively.
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Corollary 6.18 With the notations above, if we assume that for every ε > 0 there
exists κε > 0 such that

(i) κε ≥ ‖gε,i − gi‖∞, ∀ ε > 0, ∀i = 1, . . . , s′.

(ii) limε→0 κε = 0

(iii) limε→0
‖Dβ(gε,i−gi)‖∞

κ
m−|β|− 1

2
ε

= 0, ∀ β ∈ NN with |β| ≤ m and for all i = 1, . . . , s′.

Then condition (C) is satisfied, hence H−1
V (Ωε)

C→ H−1
V (Ω).

Remark 6.19 Observe that a similar observation as in Remark 6.16 can be applied in
this case.

Finally, we can deduce the following

Theorem 6.20 Let A be an atlas in RN , M > 0, m ∈ N, m ≥ 2. Let Ωε,Ω ∈ CmM (A),
ε > 0, be such that

lim
ε→0

d
(m−1)
A (Ωε,Ω) = 0.

Then condition (C) is satisfied, hence H−1
V (Ωε)

C→ H−1
V (Ω).

Proof. Apply Corollary 6.18 with κε = (d
(m−1)
A (Ωε,Ω))

1
m . 2

7 The biharmonic operator with intermediate boundary
conditions

In this section, we shall consider the biharmonic operator subject to intermediate
boundary conditions in a family of domains with oscillating boundaries.

Without loss of generality and to simplify the exposition, let us assume that our
domain Ω ⊂ RN is of the form Ω = W × (−1, 0) where W ⊂ RN−1 is either an (N − 1)
dimensional cuboid as in Lemma 6.2 or a smooth domain as in Remark 6.15. We also
assume that the perturbed domain Ωε is given by

Ωε = {(x̄, xN ) : x̄ ∈W, −1 < xN < gε(x̄)} (7.1)

where gε(x̄) = εαb(x̄/ε) for all x̄ ∈ W and b : RN−1 → [0, 1
2) is a Y -periodic fixed

function of class C2, where Y is the unit cell Y = (−1
2 ,

1
2)N−1 and α > 0. Note that for

simplicity, we have assumed that b ≥ 0. Note that the general case can also be treated
in a straightforward way, although to avoid annoying technicalities and for the sake of
the exposition we will stick to the simpler case b ≥ 0. This implies in particular that
Ω ⊂ Ωε, ε > 0. We denote by Γε the set {(x̄, xN ) : x̄ ∈ W, xN = gε(x̄)} which is the
part of the boundary of Ωε above W . It is also convenient to set Ω0 = Ω. In the sequel
we shall also identify Γ0 = W × {0} with W .

Namely, we shall consider the operators

HΩε,I u = ∆2u+ u

on the open sets Ωε, with u subject to the classical boundary conditions

u = 0, and ∆u−K∂u

∂ν
= 0, on ∂Ωε,
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where K denotes the mean curvature of ∂Ωε, i.e. the sum of the principal curvatures.
More precisely, the operators HΩε,I are the operators associated with the quadratic
form

QΩε(u, v) =

∫
Ωε

(D2u : D2v + uv)dx (7.2)

defined for all u, v ∈ W 2,2(Ωε) ∩W 1,2
0 (Ωε), as discussed in Section 2. Recall that D2u

denotes the Hessian matrix of u and D2u : D2v =
∑N

i,j=1
∂2u

∂xi∂xj
∂2v

∂xi∂xj
.

It is clear that this is a special case of those discussed in the previous section with
m = 2 and k = 1 in (6.1).

It will be convenient to denote by HΩ,D the operator ∆2 + I subject to Dirichlet
boundary conditions on W , that is,

u =
∂u

∂ν
= 0, on W (7.3)

and intermediate boundary conditions on ∂Ω \W , which is the operator canonically
associated with the quadratic form (7.2) defined for all u, v ∈W 2,2

0,W (Ω) where W 2,2
0,W (Ω)

is the space of functions u in W 2,2(Ω) ∩W 1,2
0 (Ω) satisfying conditions (7.3).

We have the following result.

Theorem 7.4 Let Ωε, ε ≥ 0, with Ω0 = Ω be open sets in RN defined as above. Let
HΩε,I and HΩ,D be the corresponding operators defined as above. Then we have the
following trichotomy:

i) If α > 3/2, then H−1
Ωε,I

C→ H−1
Ω,I .

ii) If 0 < α < 3/2 and b is non-constant, then H−1
Ωε,I

C→ H−1
Ω,D.

iii) If α = 3/2, then H−1
Ωε,I

C→ Ĥ−1
Ω , where ĤΩ is the operator ∆2 + I in Ω with inter-

mediate boundary conditions on ∂Ω\W and the following boundary conditions in
W : u = 0, ∆u+ γ ∂u∂ν = 0, where the factor γ is given as

γ =

∫
Y×(−∞,0)

|D2V |2dy = −
∫
Y
b
∂

∂yN
(∆ȳV + ∆V )dȳ. (7.5)

Here ∆ȳ is the Laplace operator in the ȳ-variables and the function V is Y -periodic
in the variables ȳ and satisfies the following microscopic problem

∆2V = 0, in Y × (−∞, 0),
V (ȳ, 0) = b(ȳ), on Y,
∂2V
∂y2
N

(ȳ, 0) = 0, on Y.
(7.6)

Remark 7.7 For completeness, we have stated in Theorem 7.4 the three different cases
but up to now we can only show part i) and ii). We will provide a proof of these two
cases and will leave the proof of case α = 3/2, which is quite involved, for Section 8.

In order to prove part ii) of Theorem 7.4, we are going to use Lemma 4.3 i) from [17],
which is stated and proved in dimension N = 3. However, the proof goes unchanged for
any dimension N ≥ 2. For the convenience of the reader, we state this result adapted
to our situation:
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Lemma 7.8 Let Uε ∈ (H1(Ωε))
N be a bounded sequence with Uε ·ν = 0 on Γε and such

that Uε converges weakly to U ∈ (H1(Ωε))
N as ε→ 0. If α < 3/2, then

U(x̄, 0) · ∇b(ȳ) = 0, a.e. on W × Y.

Proof of Theorem 7.4 i) and ii). (i) Let α̃ ∈]3/2, α[. It is easily verified that
conditions (i), (ii), (iii) in Lemma 6.2 are satisfied with κε = ε2α̃/3 for ε small enough.

(ii) We prove that condition (C) is satisfied with V (Ω) = W 2,2
0,W (Ω) and V (Ωε) =

W 2,2(Ωε) ∩W 1,2
0 (Ωε). Let Kε = Ω. Notice that condition (3.2) is trivially satisfied.

Moreover, it is easy to see that (C1) is also satisfied. Since V (Ωε) is continuously
embedded into W 1,2

0 (Ωε), we have that if vε ∈ V (Ωε) with QΩε(vε) ≤ C with C inde-
pendent of ε, then ‖vε‖W 1,2(Ωε) ≤ C̃ for some C̃ independent of ε (see also Burenkov [11,
Thm. 6, p. 160]). Using Poincaré inequality in the xN direction in Ωε \ Ω, we easily
get ‖vε‖2L2(Ωε\Ω) ≤ ρ(ε)‖∂xN vε‖2L2(Ωε\Ω) for some ρ(ε)→ 0. This implies (C1).

We define now Tε the extension-by-zero operator through the boundary W and Eε
the restriction operator to Ω. Note that Tε is well-defined since functions in W 2,2

0,W (Ω)
vanish on W together with their gradients. With these definitions it is straightforward
to see that conditions (C2) and (C3) (i), (ii) are satisfied.

We now prove that condition (C3) (iii) is satisfied. Let vε ∈ W 2,2(Ωε) ∩W 1,2
0 (Ωε)

be such that supε>0QΩε(vε) = supε>0 ‖vε‖2W 2,2(Ωε)
<∞ and let v ∈ L2(Ω) be such that

vε|Ω
ε→0−→ v, in L2(Ω).

Note that possibly passing to a subsequence we have that vε
ε→0
⇀ v in W 2,2(Ω) and

vε
ε→0−→ v in W 1,2(Ω). Moreover, proceeding as in the proof of Lemma 6.2 one can show

that v ∈ W 1,2
0 (Ω). It remains to prove that ∇v = 0 on W . Since v = 0 on W we have

that ∂v
∂xi

= 0 on W for all i = 1, . . . , N − 1. Thus it suffices to show that ∂v
∂xN

= 0 on
W . For this we apply Lemma 4.3 from [17]. To do so, for any i = 1, . . . , N − 1 we
consider the vector valued function

U (i)
ε =

(
0, . . . , 0,− ∂vε

∂xN
, 0, . . . , 0,

∂vε
∂xi

)
(7.9)

where the only non-zero entries are the i-th and the N -th ones. Since vε = 0 on ∂Ωε

then vε(x̄, gε(x̄)) = 0 for all x̄ ∈ W . Differentiating this last expression with respect

to xi for i = 1, . . . , N − 1 we easily get U
(i)
ε · ν = 0 on Γε where ν is the normal to

the boundary. This allows to apply Lemma 4.3 from [17] to conclude that for any
i = 1, . . . , N − 1

∂v(x̄, 0)

∂xN

∂b(ȳ)

∂yi
= 0, a.e. on W × Y.

Observe that the first term depends only on the variable x̄ ∈W and the second term on
ȳ ∈ Y . Since b is a non-constant smooth function, there must exist at least one ȳ0 ∈ Y
and one i ∈ {1, 2, . . . , N − 1} such that ∂b(ȳ0)

∂yi
6= 0 and therefore we have ∂b(ȳ)

∂yi
6= 0 for

all ȳ in a neighborhood of ȳ0. Therefore, necessarily, we must have ∂v
∂xN

= 0 a.e. on W .
Thus ∇v = 0 on W and condition (C) is satisfied.

The proof of statement (iii) is carried out in the next section. 2
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8 Critical case α = 3/2 (proof of Theorem 7.4 iii)

We divide the proof into several steps organized as subsections. There are several
important ingredients in the proof of the critical case. The first thing is to consider
again the diffeomorphism Φε : Ωε → Ω, particularized for this situation and study
some of its properties. This is done in Subsection 8.1. This diffeomorphism will gen-
erate its pullback transformation, that we denote again by Tε, which will allow us to
transform functions defined in Ω to functions defined in Ωε via composition with the
diffeomorphism Φε, see (8.3) below.

With this transformation, we will consider the weak formulation of our problem
with a test function of the type Tεϕ with ϕ a test function in Ω, see (8.16) below, and
we will be able to easily pass to the limit in all terms except in a term of the type∫

W×(−ε,0)
D2vε : D2Tεϕdx,

that requires a deeper analysis. Notice that this term carries the information of the
oscillations of the function vε and the oscillations of the domain, which are coded in the
transformation Tε. Therefore, it is not surprising that this is the the most complicated
term to analyze. We will treat this term using the unfolding operator method from
homogenization. The definition and main ingredients of this tool particularized to our
case are contained in Subsection 8.2.

The weak formulation of our problem and passing to the limit in all the terms,
including the difficult one is carried out in Subsection 8.3, proving Theorem 8.40. In
the limit problem, there is an auxiliary function v̂, which needs to be characterized.
As it is customary, this is done by considering another “oscillatory test function” and
passing to the limit appropriately. The particular calculations to characterize v̂ are
contained in Subsection 8.4, which concludes the proof of Theorem 7.4 iii).

8.1 A special transformation from Ωε to Ω

For ε > 0 small, we will use the diffeomorphism Φε : Ωε → Ω defined in the proof of
Lemma 6.2 with m = 2, a = −1, g(·) ≡ 0, and g̃ε(·) ≡ −ε. For the convenience of the
reader we write it here explicitly : Φε(x̄, xN ) = (x̄, xN − hε(x̄, xN )) for all (x̄, xN ) ∈ Ω̄ε

where

hε(x̄, xN ) =


0, if − 1 ≤ xN ≤ −ε

gε(x̄)
(

xN+ε
gε(x̄)+ε

)3
, if − ε < xN ≤ gε(x̄) .

(8.1)

Here the function gε(·) is the function defining the “upper” boundary of Ωε, see (7.1)
and the lines following (7.1). We note that Φε is in fact well-defined for any α > 1
provided ε > 0 is sufficiently small. For this reason, although this section is devoted to
the case α = 3/2, we shall try to keep track of α in all formulas and statements where
the specific value α = 3/2 is not required.

The proof of the following lemma follows by straightforward computations.

Lemma 8.2 The map Φε is a diffeomorphism of class C2 and there exists a constant
c > 0 independent of ε such that

|hε| ≤ cεα,
∣∣∣∣∂hε∂xi

∣∣∣∣ ≤ cεα−1,

∣∣∣∣ ∂2hε
∂xi∂xj

∣∣∣∣ ≤ cεα−2,
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for all ε > 0 sufficiently small.

In the sequel we shall use the pull-back operator Tε associated with Φε. Namely, Tε
is the operator

Tε : L2(Ω) → L2(Ωε)
u 7→ u ◦ Φε

(8.3)

Note that Tε is a linear homeomorphism and its restrictions to the spaces W 1,2
0 (Ω) and

W 2,2(Ω) define linear homeomorphisms onto W 1,2
0 (Ωε) and W 2,2(Ωε) respectively. In

particular, Tε is an isomorphism between the spaces V (Ω) = W 2,2(Ω) ∩W 1,2
0 (Ω) and

V (Ωε) = W 2,2(Ωε) ∩W 1,2
0 (Ωε). We also note that for any α > 1 the operator norm

‖Tε‖L(W 1,2
0 (Ω),W 1,2

0 (Ωε))
is uniformly bounded with respect to ε, while the operator norm

‖Tε‖L(W 2,2(Ω),W 2,2(Ωε)) is uniformly bounded with respect to ε only if α ≥ 2.

Remark 8.4 As a difference from Theorem 7.4, case i) and ii) in the critical case α =
3/2 we will not be able to show condition (C). We explain here where this condition fails.
Notice first, that Tε is the natural candidate to show condition (C2), see Definition 3.1.
The other natural operator Eε : V (Ωε) → W 2,2(Ω) should be the restriction operator.
With respect to Kε we have two different and “natural” options: Kε = Ω or Kε = W ×
(−1,−ε). For both options, condition (3.2) and (C1) hold in an easy way. Moreover,
condition (C3) and (C2) iii) also hold.

The main difficulty is with condition (C2) i) or (C2) ii) depending on the choice of
Kε. In case Kε = Ω, then (C2) i) does not hold and in case Kε = W × (−1,−ε) then
(C2) ii) does not hold. As a matter of fact it will be seen later that ‖Tεϕ‖W 2,2(W×(−ε,0)

does not go to 0 for most ϕ ∈ V (Ω).
Hence, it is not possible to show condition (C) for this case.

8.2 Unfolding operator

We will see that the limiting problem will contain an extra boundary term, which
represents the interplay between the boundary oscillations and the boundary conditions.
In order to identify the limiting problem in the case α = 3/2 and prove Theorem 7.4
(iii), we shall use the unfolding operator method. In this section we recall the definition
of the unfolding operator and some of its properties. We follow the approach of Casado-
Dı́az et al. [16, 17] and we consider an unfolding operator which is an anisotropic version
of the classical unfolding operator discussed in Cioranescu, Damlamian and Griso [19].
We note that the well-known properties of the standard unfolding operator have to be
slightly modified. For example, in the exact integration formula stated in Lemma 8.7
below, an extra factor ε appears in the right-hand side. Moreover, the limiting function
V in Lemma 8.9 below turns out to be Y -periodic while, keeping in mind in the classical
unfolding method, one would expect that the limiting function would be the sum of
a periodic function and a polynomial of the second degree in the variables y (cf., [19,
Thm. 3.6]).

For any k ∈ ZN−1 and ε > 0 we consider the ε-cell Ckε = εk + εY , where as above,
the basic cell Y is given by Y = (−1

2 ,
1
2)N−1. Let IW,ε = {k ∈ ZN−1 : Ckε ⊂ W}. We

set
Ŵε =

⋃
k∈IW,ε

Ckε .

Then we recall the following
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Definition 8.5 Let u be a real-valued function defined on Ω. For any ε > 0 sufficiently
small the unfolding û of u is the real-valued function defined on Ŵε × Y × (−1/ε, 0) by

û(x̄, ȳ, yN ) = u
(
ε
[ x̄
ε

]
+ εȳ, εyN

)
, (8.6)

for all (x̄, ȳ, yN ) ∈ Ŵε×Y × (−1/ε, 0), where
[
x̄
ε

]
denotes the integer part of the vector

x̄
ε with respect to the unit cell Y , that is,

[
x̄
ε

]
= k ∈ ZN−1 if and only if x̄ ∈ Ckε .

We also recall the following lemma the proof of which can be carried out exactly as
in the standard case discussed in [19].

Lemma 8.7 (Exact integration formula) Lat a ∈ [−1, 0) be fixed. Then∫
Ŵε×(a,0)

u(x)dx = ε

∫
Ŵε×Y×(a/ε,0)

û(x̄, y)dx̄dy

for all u ∈ L1(Ω) and ε > 0 sufficiently small.

We denote by W 2,2
PerY ,loc

(Y × (−∞, 0)) the space of functions in W 2,2
loc (RN−1 ×

(−∞, 0)) which are also Y -periodic in the first (N − 1) variables ȳ. As customary,
we shall often identify functions in W 2,2

PerY ,loc
(Y × (−∞, 0)) with their restrictions to

Y ×(−∞, 0). In the sequel we are going to consider functions in W 2,2
PerY ,loc

(Y ×(−∞, 0))
whose second order weak derivatives are square summable in Y × (−∞, 0). For this
reason we find it convenient to set

w2,2
PerY

(Y × (−∞, 0)) =
{
u ∈W 2,2

PerY ,loc
(Y × (−∞, 0)) :

‖Dαu‖L2(Y×(−∞,0)) <∞, ∀|α| = 2
}
. (8.8)

Lemma 8.9 The following statements hold:

(i) Let vε ∈W 2,2(Ω) with ‖vε‖W 2,2(Ω) ≤M for all ε > 0. Let Vε be defined by

Vε(x̄, y) = v̂ε(x̄, y)−
∫
Y
v̂ε(x̄, ȳ, 0)dȳ −

∫
Y
∇yv̂ε(x̄, ȳ, 0)dȳ · y (8.10)

for (x̄, y) ∈ Ŵε×Y ×(−1/ε, 0). Then there exists v̂ ∈ L2(W,w2,2
PerY

(Y ×(−∞, 0)))
such that

(a) Vε
ε3/2

ε→0
⇀ v̂ and

∇yVε
ε3/2

ε→0
⇀ ∇yv̂ in L2(W × Y × (d, 0)) for any d < 0.

(b)
Dαy Vε

ε3/2
=

Dαy v̂ε

ε3/2
ε→0
⇀ Dα

y v̂ in L2(W × Y × (−∞, 0)), for any |α| = 2,

where it is understood that functions Vε,∇yVε and Dα
y Vε are extended by zero in

the whole of W × Y × (−∞, 0) outside their natural domain of definition Ŵε ×
Y × (−1/ε, 0).

(ii) Let v ∈W 1,2(Ω). Then,

̂(Tεv)|Ω
ε→0−→ v(x̄, 0), in L2(W × Y × (−1, 0))

where the operator Tε is defined in (8.3).
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Proof. We start proving statement (i). It is obvious that Dα
y Vε = Dα

y v̂ε for any
|α| = 2. By Lemma 8.7 and the chain rule it follows that∫

Ŵε×Y×(−1/ε,0)

∣∣∣∣Dα
y Vε

ε3/2

∣∣∣∣2 dx̄dy =

∫
Ŵε×Y×(−1/ε,0)

ε|D̂αvε|2dx̄dy

=

∫
Ŵε×(−1,0)

|Dαvε|2dx ≤
∫

Ω
|Dαvε|2dx ≤M2, (8.11)

for all ε > 0, hence
∥∥∥Dαy Vε
ε3/2

∥∥∥
L2(W×Y×(−∞,0))

is uniformly bounded with respect to ε.

Note that the operator defined by
∫
Y v(ȳ, 0)dȳ+

∫
Y ∇v(ȳ, 0)dȳ · y for functions v in

a Sobolev space of the type W 2,2(Y × (d, 0)) with d < 0, is a projector on the space
of polynomials of the first degree in y. Thus, we can apply the Poincaré-Wirtinger
inequality and conclude that for any d < 0 there exists cd > 0 such that∥∥∥∥ Vεε3/2

∥∥∥∥
L2(W×Y×(d,0))

,

∥∥∥∥∇yVεε3/2

∥∥∥∥
L2(W×Y×(d,0))

≤ cd
∑
|α|=2

∥∥∥∥Dα
y Vε

ε3/2

∥∥∥∥
L2(W×Y×(d,0))

≤ cdM,

for all ε > 0. A standard argument implies the existence of a real-valued function v̂
defined on W × Y × (−∞, 0) which admits weak derivatives up to the second order
locally in the variable y, such that v̂,∇yv̂ ∈ L2(W × Y × (d, 0)) for any d < 0, Dα

y v̂ ∈
L2(W × Y × (−∞, 0)), and such that statements (a) and (b) hold.

It remains to prove that v̂ is Y -periodic in the variables ȳ. Note that∫
Y
∇yv̂(x̄, ȳ, 0)dȳ = 0,

for almost all x ∈W , hence it suffices to prove that ∇yv̂ is Y -periodic in the variables
ȳ. We note that

∇yVε(x̄, y)

ε3/2
=
∇̂vε(x̄, y)−

∫
Y ∇̂vε(x̄, ȳ, 0)dȳ
√
ε

.

Thus, in order conclude it is simply enough to apply the same argument in Step 3 of
the proof of Lemma 4.3 in Casado-Dı́az et al.[17] to the function ∇vε.

We now prove statement (ii). If v ∈ C∞(Ω̄), we easily can see that∫
Ŵε×Y×(−1,0)

∣∣∣ ̂(Tεv)|Ω − v(x̄, 0)
∣∣∣2 dx̄dy =

∫
Y×(−1,0)

∫
∪k∈IW,εC

k
ε

∣∣∣T̂εv − v(x̄, 0)
∣∣∣2 dx̄dy

=

∫ 0

−1

∑
k∈IW,ε

∫
Ckε

∫
Y

∣∣∣(Tεv)(ε
[ x̄
ε

]
+ εȳ, εyN )− v(x̄, 0)

∣∣∣2 dȳdx̄dyN
=

∫ 0

−1

∑
k∈IW,ε

∫
Ckε

∫
Ckε

|(Tεv)(z̄, εyN )− v(x̄, 0)|2 dz̄

εN−1
dx̄dyN

=

∫ 0

−1

∑
k∈IW,ε

∫
Ckε

∫
Ckε

|v(z̄, εyN − hε(z̄, εyN ))− v(x̄, 0)|2 dz̄

εN−1
dx̄dyN

≤ c
∫ 0

−1

∑
k∈IW,ε

∫
Ckε

∫
Ckε

|z̄ − x̄|2 + |εyN − hε(z̄, εyN )|2 dz̄

εN−1
dx̄dyN

≤ c
∫ 0

−1

∑
k∈IW,ε

∫
Ckε

ε2dx̄dyN ≤ cε2, (8.12)
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hence statement (ii) is proved for smooth functions. In the case of an arbitrary function
v ∈ W 1,2(Ω), we use an approximation argument. Namely, we consider a sequence
vn ∈ C∞(Ω̄) converging to v in W 1,2(Ω) as n→∞ and we note that

‖̂(Tεv)|Ω− v(x, 0)‖ ≤ ‖̂(Tεv)|Ω− ̂(Tεvn)|Ω‖+ ‖ ̂(Tεvn)|Ω− vn(x̄, 0)‖+ ‖vn(x̄, 0)− v(x̄, 0)‖
(8.13)

where all norms are taken in L2(W × Y × (−1, 0)). Since statement (ii) holds for
smooth functions, the second term in the right hand-side of (8.13) goes to zero as
ε → 0. Moreover, by the continuity of the trace operator, also the third term in the
right hand-side of (8.13) goes to zero as ε → 0. We now consider the first term in the
right hand-side of (8.13) . By Lemma 8.7 and changing variables in integrals, we have∫

Ŵε×Y×(−1,0)

∣∣∣T̂εv − T̂εvn∣∣∣2 dx̄dy
= ε−1

∫
Ŵε×(−ε,0)

|v ◦ Φε − vn ◦ Φε|2dx

≤ cε−1

∫
Φε(Ŵε×(−ε,0))

|v − vn|2dx ≤ c‖v − vn‖2W 1,2(Ω) (8.14)

where the last inequality is deduced by the fact that the diameter in the xN -direction
of the set Φε(Ŵε × (−ε, 0)) is O(ε) as ε→ 0 and that the function |v − vn| is bounded
in almost all vertical lines. Since the right hand-side of (8.14) goes to zero as n→∞,
we easily conclude. 2

8.3 Weak macroscopic limiting problem

Let fε ∈ L2(Ωε) and f ∈ L2(Ω) be such that fε
ε→0
⇀ f in L2(RN ) with the understanding

that such functions are extended by zero outside Ωε and Ω respectively. Let vε ∈
V (Ωε) = W 2,2(Ωε) ∩W 1,2

0 (Ωε) be such that

HΩε,Ivε = fε (8.15)

for all ε > 0 small enough. By (8.15) it follows that ‖vε‖W 2,2(Ωε) ≤ M for all ε > 0
sufficiently small hence, possibly passing to a subsequence, there exists v ∈ W 2,2(Ω) ∩
W 1,2

0 (Ω) such that vε
ε→0
⇀ v in W 2,2(Ω) and vε

ε→0−→ v in L2(Ω).

Let ϕ ∈ V (Ω) = W 2,2(Ω) ∩W 1,2
0 (Ω) be a fixed test function. Since Tεϕ ∈ V (Ωε),

by (8.15) it follows that∫
Ωε

D2vε : D2Tεϕdx+

∫
Ωε

vεTεϕdx =

∫
Ωε

fεTεϕdx. (8.16)

It is easy to see that∫
Ωε

vεTεϕdx
ε→0−→

∫
Ω
vϕdx, and

∫
Ωε

fεTεϕdx
ε→0−→

∫
Ω
fϕdx. (8.17)

We now consider the first term in the left hand-side of (8.16). It is convenient to
set Kε = W × (−1,−ε) so that∫

Ωε

D2vε : D2Tεϕdx =

∫
Ωε\Ω

D2vε : D2Tεϕdx+

∫
Ω\Kε

D2vε : D2Tεϕdx+

∫
Kε

D2vε : D2Tεϕdx

(8.18)
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Since D2Tεϕ = D2ϕ in Kε we have that∫
Kε

D2vε : D2Tεϕdx =

∫
Kε

D2vε : D2ϕdx
ε→0−→

∫
Ω
D2v : D2ϕdx. (8.19)

Moreover, one can prove that∫
Ωε\Ω

D2vε : D2Tεϕdx
ε→0−→ 0. (8.20)

Indeed, by changing variables in integrals, using the chain rule and Lemma 8.2 we
get the following inequalities (here and in the sequel, to shorten notation we drop the
summation symbols):(∫

Ωε\Ω
D2vε : D2Tεϕdx

)2

≤ c
∫

Ωε\Ω

∣∣∣∣ ∂2Tεϕ

∂xi∂xj

∣∣∣∣2 dx
≤ c

∫
Ωε\Ω

∣∣∣∣ ∂2ϕ

∂xk∂xl
(Φε(x))

∂Φ
(k)
ε

∂xi

∂Φ
(l)
ε

∂xj

∣∣∣∣2 +

∣∣∣∣ ∂ϕ∂xk (Φε(x))
∂2(Φ

(k)
ε (x))

∂xi∂xj

∣∣∣∣2dx
≤ c

∫
Ωε\Ω

∣∣∣∣ ∂2ϕ

∂xk∂xl
(Φε(x))

∣∣∣∣2dx+ cε−1

∫
Ωε\Ω

∣∣∣∣ ∂ϕ∂xk (Φε(x))

∣∣∣∣2dx
≤ c

∫
Φε(Ωε\Ω)

∣∣∣∣ ∂2ϕ

∂xk∂xl

∣∣∣∣2dx+ cε−1

∫
Φε(Ωε\Ω)

∣∣∣∣ ∂ϕ∂xk
∣∣∣∣2dx. (8.21)

Observe that

Φε(Ωε \ Ω) = {(x̄, xN − hε(x̄, xN )) : x̄ ∈W, 0 < xN < gε(x̄)}
⊂ {(x̄, zN ) : x̄ ∈W,−gε(x̄) < zN < 0}
⊂ {(x̄, zN ) : x̄ ∈W,−ε3/2b0 < zN < 0}, (8.22)

where b0 = ‖b(·)‖L∞(W ). Hence, |Φε(Ωε \ Ω)| ≤ cε3/2 ε→0−→ 0 and therefore∫
Φε(Ωε\Ω)

∣∣∣∣ ∂2ϕ

∂xk∂xl

∣∣∣∣2dx ε→0−→ 0.

Moreover, notice that ∂ϕ
∂xk

(x̄, ·) ∈W 1,2(−1, 0), a.e. x̄ ∈W and therefore∥∥∥∥ ∂ϕ∂xk (x̄, ·)
∥∥∥∥2

L∞(−1,0)

≤ C
∥∥∥∥ ∂ϕ∂xk (x̄, ·)

∥∥∥∥2

W 1,2(−1,0)

a.e. x̄ ∈W.

Hence, the last term from (8.21) is analyzed as follows

cε−1

∫
Φε(Ωε\Ω)

∣∣∣∣ ∂ϕ∂xk
∣∣∣∣2dx ≤ cε−1ε3/2b0

∫
W

∥∥∥∥ ∂ϕ∂xk (x̄, ·)
∥∥∥∥2

L∞(−1,0)

dx̄

≤ Cε1/2
∫
W

∥∥∥∥ ∂ϕ∂xk (x̄, ·)
∥∥∥∥2

W 1,2(−1,0)

dx̄ ≤ Cε1/2‖ϕ‖2W 2,2(Ω)
ε→0−→ 0. (8.23)

We now consider the second term in the right hand-side of (8.18). It is convenient

to set Qε = Ŵε × (−ε, 0) so that∫
Ω\Kε

D2vε : D2Tεϕdx =

∫
Qε

D2vε : D2Tεϕdx+

∫
Ω\(Kε∪Qε)

D2vε : D2Tεϕdx. (8.24)
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One can prove that ∫
Ω\(Kε∪Qε)

D2vε : D2Tεϕdx
ε→0−→ 0. (8.25)

Indeed, proceeding exactly as in (8.21) we get(∫
Ω\(Kε∪Qε)

D2vε : D2Tεϕdx

)2

≤ c
∫

Φε(Ω\(Kε∪Qε)

∣∣∣∣ ∂2ϕ

∂xk∂xl

∣∣∣∣2dx+ cε−1

∫
Φε(Ω\(Kε∪Qε))

∣∣∣∣ ∂ϕ∂xk
∣∣∣∣2dx. (8.26)

Since the diameter of the set Φε(Ω \ (Kε ∪ Qε)) in the direction xN is O(ε) as ε → 0,
we get

ε−1

∫
Φε(Ω\(Kε∪Qε))

∣∣∣∣ ∂ϕ∂xk
∣∣∣∣2dx ≤ c‖ϕ‖2W 2,2(Ω\(Ŵε×(−1,0)))

.

Moreover, since |Ω \ (Ŵε × (−1, 0))| ε→0−→ 0 and ϕ is a fixed function, we have

‖ϕ‖2
W 2,2(Ω\(Ŵε×(−1,0)))

ε→0−→ 0.

Now, using Φε(Ω\ (Kε∪Qε) ⊂ Φε(Ω\Kε) ⊂ Ω\Kε and |Ω\Kε|
ε→0−→ 0 and that again ϕ

is a fixed function, we also get that the first term in the right-hand side of (8.26) goes
to 0 as ε→ 0. Thus, (8.25) follows.

It remains to analyze the first term in the right-hand side of (8.24). To do so we
need the following technical lemma.

Lemma 8.27 For all y ∈ Y × (−1, 0) and i, j = 1, . . . , N , the functions ĥε(x̄, y),

∂̂hε
∂xi

(x̄, y) and ∂̂2hε
∂xi∂xj

(x̄, y) (where the function hε is defined by (8.1)) are independent

of x̄. Moreover, ĥε(x̄, y) = O(ε3/2), ∂̂hε
∂xi

(x̄, y) = O(ε1/2) as ε→ 0 and

ε
1
2
∂̂2hε
∂xi∂xj

(x̄, y)
ε→0−→

∂2
(
b(ȳ)(yN + 1)3

)
∂yi∂yj

, (8.28)

for all i, j = 1, . . . , N , uniformly in y ∈ Y × (−1, 0).

Proof. The independence of the functions in the statement from x̄ is easily deduced
by the periodicity of the function b and the definition of hε in (8.1). The rest of the
proof follows by straightforward computations and we report only those required for
the proof of (8.28) for the convenience of the reader. Note that

∂̂2hε
∂xi∂xj

= εα−2 ∂2b

∂yi∂yj

̂(
xN + ε

gε(x̄) + ε

)3

+ εα−1 ∂b

∂yi

∂̂

∂xj

(
xN + ε

gε(x̄) + ε

)3

+εα−1 ∂b

∂yj

∂̂

∂xi

(
xN + ε

gε(x̄) + ε

)3

+ εαb(ȳ)
∂̂2

∂xi∂xj

(
xN + ε

gε(x̄) + ε

)3

. (8.29)
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Moreover,

∂̂

∂xi

(
xN + ε

gε(x̄) + ε

)3

=
3δiN ε

−1(yN + 1)2

(εα−1b(ȳ) + 1)3
−

3δiN ε
α−2(yN + 1)3 ∂b

∂yi

(εα−1b(ȳ) + 1)4
(8.30)

and

∂̂2

∂xi∂xj

(
xN + ε

gε(x̄) + ε

)3

=
6δiNδjN ε

−2(yN + 1)

(εα−1b(ȳ) + 1)3

−
9εα−3(yN + 1)2(δiN

∂b
∂yj

+ δjN
∂b
∂yi

)

(εα−1b(ȳ) + 1)4
+

12ε2α−4(yN + 1)3 ∂b
∂yi

∂b
∂yj

(εα−1b(ȳ) + 1)5

−
3εα−3(yN + 1)3 ∂2b

∂yi∂yi

(εα−1b(ȳ) + 1)4
(8.31)

By combining (8.29)-(8.31) we easily get (8.28). 2

We are now ready to prove the following

Lemma 8.32 Let v̂ ∈ L2(W,w2,2
pery(Y × (−∞, 0))) be as in Lemma 8.9. Then∫

Qε

D2vε : D2Tεϕdx
ε→0−→ −

∫
W

∫
Y×(−1,0)

D2
y v̂(x̄, y) : D2

y(b(ȳ)(1 + yN )3)dy
∂ϕ

∂xN
(x̄, 0)dx̄,

(8.33)
where D2

y denotes the Hessian matrix in the variable y.

Proof. By Lemma 8.7 and the chain rule we get∫
Qε

D2vε : D2Tεϕdx

= ε

∫
Ŵε×Y×(−1,0)

D̂2vε : D̂2Tεϕdx̄dy = ε−3

∫
Ŵε×Y×(−1,0)

D2
y v̂ε : D2

yT̂εϕdx̄dy

= ε−3

∫
Ŵε×Y×(−1,0)

∂2v̂ε
∂yi∂yj

∂2ϕ

∂xk∂xl
(Φ̂ε(y))

∂Φ̂
(k)
ε

∂yi

∂Φ̂
(l)
ε

∂yj
dx̄dy (8.34)

+ε−3

∫
Ŵε×Y×(−1,0)

∂2v̂ε
∂yi∂yj

∂ϕ

∂xk
(Φ̂ε(y))

∂2Φ̂
(k)
ε

∂yi∂yj
dx̄dy. (8.35)

We note that
∂Φ̂

(k)
ε

∂yi
=

{
εδki, if k 6= N,

εδNi − ε ∂̂hε∂xi
, if k = N.

(8.36)

By Lemma 8.9 (i), we have that ‖ ∂2v̂ε
∂yi∂yj

‖
L2(Ŵε×Y×(−1,0))

= O(ε3/2) as ε→ 0 and by
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(8.36) we have that ∂Φ̂
(k)
ε

∂yi
= O(ε) as ε→ 0. Using also Lemma 8.7 once more, we get∣∣∣∣∣ε−3

∫
Ŵε×Y×(−1,0)

∂2v̂ε
∂yi∂yj

∂2ϕ

∂xk∂xl
(Φ̂ε(y))

∂Φ̂
(k)
ε

∂yi

∂Φ̂
(l)
ε

∂yj
dx̄dy

∣∣∣∣∣
≤ cε2

∥∥∥∥ε−3/2 ∂2v̂ε
∂yi∂yj

∥∥∥∥
L2(Ŵε×Y×(−1,0))

∥∥∥∥ε−3/2 ∂2ϕ

∂xk∂xl
(Φ̂ε(y))

∥∥∥∥
L2(Ŵε×Y×(−1,0))

≤ cε1/2
∥∥∥∥ ∂2ϕ

∂xk∂xl
(Φ̂ε(y))

∥∥∥∥
L2(Ŵε×Y×(−1,0))

≤ c
∥∥∥∥ ∂2ϕ

∂xk∂xl
(Φε(x))

∥∥∥∥
L2(Qε)

≤ c
∥∥∥∥ ∂2ϕ

∂xk∂xl

∥∥∥∥
L2(Φε(Qε))

. (8.37)

Hence, the integral in (8.34) vanishes as ε→ 0.
We note that

∂2Φ̂
(k)
ε

∂yi∂yj
=

{
0, if k 6= N,

−ε2 ∂̂2hε
∂xi∂xj

, if k = N.
(8.38)

Therefore, in the sum of integrals in (8.35) the terms corresponding to the indexes
k 6= N vanish. It remains to analyze the term in (8.35) with k = N .

By (8.38) we rewrite such term in the form

ε−3

∫
Ŵε×Y×(−1,0)

∂2v̂ε
∂yi∂yj

∂ϕ

∂xN
(Φ̂ε(y))

∂2Φ̂
(N)
ε

∂yi∂yj
dx̄dy

= −
∫
Ŵε×Y×(−1,0)

(
ε−3/2 ∂2v̂ε

∂yi∂yj

) ̂
Tε

∂ϕ

∂xN

(
ε1/2

∂̂2hε
∂xi∂xj

)
dx̄dy. (8.39)

By applying Lemma 8.9 (i) to the sequence vε, Lemma 8.9 (ii) with v replaced by ∂ϕ
∂xN

,
and using (8.28) we easily deduce that the integral in the right hand-side of (8.39)
converges to the integral in the right-hand side of (8.33) as ε→ 0. 2

Thus we have proved the following

Theorem 8.40 Let fε ∈ L2(Ωε) and f ∈ L2(Ω) be such that fε
ε→0
⇀ f in L2(Ω).

Let vε ∈ W 2,2(Ωε) ∩W 1,2
0 (Ωε) be the solutions to (8.15). Then possibly passing to a

subsequence, there exists v ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) and v̂ ∈ L2(W,w2,2

PerY
(Y × (−∞, 0)))

such that vε
ε→0
⇀ v in W 2,2(Ω), vε

ε→0−→ v in L2(Ω) and such that statements (a) and (b)
in Lemma 8.9 hold, and such that∫

Ω
D2v : D2ϕ+ vϕdx−

∫
W

∫
Y×(−1,0)

D2
y v̂(x̄, y) : D2

y(b(ȳ)(1 + yN )3)dy
∂ϕ

∂xN
(x̄, 0)dx̄

=

∫
Ω
fϕdx, (8.41)

for all ϕ ∈W 2,2(Ω) ∩W 1,2
0 (Ω).
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8.4 Characterization of v̂ via a weak microscopic problem

In this section we plan to characterize the function v̂ defined in Theorem 8.40.
Let ψ ∈ C∞(W×Y×]−∞, 0]) be such that suppψ ⊂ C×Y ×[d, 0] for some compact

set C ⊂W and d ∈]−∞, 0[ and such that ψ(x̄, ȳ, 0) = 0 for all (x̄, ȳ) ∈W ×Y . Assume
also that ψ is Y -periodic in the second (N − 1)-variables ȳ. We set

ψε(x) = ε
3
2ψ
(
x̄,
x̄

ε
,
xN
ε

)
, (8.42)

for all ε > 0, x ∈W×]−∞, 0]. Note that for ε sufficiently small we have that suppψε ⊂
Ω and ψε ∈ V (Ω), hence Tεψε belongs to V (Ωε) and can be used as test function in the
weak formulation of our problem in Ωε, that is,∫

Ωε

D2vε : D2Tεψεdx+

∫
Ωε

vεTεψεdx =

∫
Ωε

fεTεψεdx . (8.43)

By the presence of the factor ε
3
2 in (8.42), it is easy to see that∫

Ωε

vεTεψεdx
ε→0−→ 0, and

∫
Ωε

fεTεψεdx
ε→0−→ 0. (8.44)

We now consider the first term in the left hand-side of (8.43) and we write it in the
form ∫

Ωε

D2vε : D2Tεψεdx =

∫
Ωε\Ω

D2vε : D2Tεψεdx+

∫
Ω
D2vε : D2Tεψεdx (8.45)

With very similar arguments as the ones used to show (8.20) we can also prove that∫
Ωε\Ω

D2vε : D2Tεψεdx
ε→0−→ 0. (8.46)

We can show now the following

Lemma 8.47 If ψε is as in (8.42) and vε, v̂ are the functions from Theorem 8.40, then∫
Ω
D2vε : D2Tεψεdx→

∫
W×Y×(−∞,0)

D2
y v̂(x̄, y) : D2

yψ(x̄, y)dx̄dy. (8.48)

Proof. First of all we note that by the periodicity of ψ we have that

T̂εψε(x̄, y) = ε3/2ψ
(
ε
[ x̄
ε

]
+ εȳ, ȳ, yN − ε−1hε

(
ε
[ x̄
ε

]
+ εȳ, εyN

))
. (8.49)

We also note explicitly that

hε

(
ε
[ x̄
ε

]
+ εȳ, εyN

)
=

{
ε3/2b(ȳ)(yN+1)3

(ε1/2b(ȳ)+1)3 , if − 1 ≤ yN < 0,

0, if − 1/ε < yN < −1,

hence

Dα
y

(
ε−1hε

(
ε
[ x̄
ε

]
+ εȳ, εyN

))
ε→0−→ 0, uniformly on W × Y×]−∞, 0], (8.50)

for all |α| ≤ 2.
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Since ψ is smooth and has compact support, it is Lipschitz continuous together with
its derivatives and it easily follows that∥∥∥(Dβψ)

(
ε
[ x̄
ε

]
+ εȳ, ȳ, yN − ε−1hε

(
ε
[ x̄
ε

]
+ εȳ, εyN

))
−Dβψ(x̄, y)

∥∥∥
L2(Ŵε×Y×]−∞,0[)

ε→0−→ 0,

(8.51)
for any |β| ≤ 2. In fact, the square of the norm in (8.51) can be estimated by∫

Ŵε×Y×]−d̃,0[)

∣∣∣ε [ x̄
ε

]
+ εȳ − x̄

∣∣∣2 +
∣∣∣ε−1hε

(
ε
[ x̄
ε

]
+ εȳ, εyN

)∣∣∣2 dx̄dy
which is clearly O(ε) as ε→ 0.

By combining (8.49)-(8.51) and using the chain rule, we get that

ε−3/2Dγ
y T̂εψε(x̄, y)

ε→0−→ Dγ
yψ(x̄, y) (8.52)

in L2(W × Y×]−∞, 0[), for all |γ| = 2.
By Lemmas 8.7, 8.9 and (8.52), we conclude that∫

Ŵε×]−1,0[
D2vε : D2Tεψεdx

=

∫
Ŵε×Y×]−1/ε,0[

D2
y v̂ε

ε3/2
:
D2
yT̂εvε

ε3/2
dx̄dy

ε→0−→
∫
W×Y×(−∞,0)

D2
y v̂(x̄, y) : D2

yψ(x̄, y)dx̄dy

2

Theorem 8.53 (Characterization of v̂ via a two scale weak problem) Let v̂ ∈
L2(W,w2,2

PerY
(Y × (−∞, 0))) be the function from Theorem 8.40. Then∫

W×Y×(−∞,0)
D2
y v̂(x̄, y) : D2

yψ(x̄, y)dx̄dy = 0 , (8.54)

for all ψ ∈ L2(W,w2,2
PerY

(Y × (−∞, 0))) such that ψ(x̄, ȳ, 0) = 0 on W × Y . Moreover,
for any i = 1, . . . , N − 1, we have

∂v̂

∂yi
(x̄, ȳ, 0) = − ∂b

∂yi
(ȳ)

∂v

∂xN
(x̄, 0), on W × Y . (8.55)

In order to prove this theorem, we are going to use Lemma 4.3 ii) from [17], which,
as we mentioned above, is stated and proved in dimension N = 3 but the proof goes
unchanged for any dimension N ≥ 2. For the convenience of the reader, we state this
result adapted to our situation:

Lemma 8.56 Let Uε ∈ (H1(Ωε))
N be a bounded sequence with Uε · ν = 0 on Γε and

such that Uε converge weakly to U ∈ (H1(Ωε))
N as ε→ 0.

Let Û : W × Y × (−∞, 0)→ RN be defined as the weak limit (via subsequences) in
L2(W × Y × (d, 0)) for any d < 0, of the sequence of functions defined by

Ûε(x̄, y)−
∫
Y
Ûε(x̄, ȳ, 0)dȳ

√
ε

.

Then, if α = 3/2,

ÛN (x̄, ȳ, 0) = ∇b(ȳ) · U(x̄, 0) a.e. (x̄, ȳ) ∈W × Y. (8.57)
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Remark 8.58 Formula (8.57) is the equivalent to formula (4.11) from [17]. Notice
that there is a sign difference between the two formulas. This is due to the fact that the
domain Ωε in [17] is of the form Ωε = {(x̄, xN ) : x̄ ∈W,−gε(x̄) < xN < 1}, that is, the
oscillating boundary is at the bottom of the domain. While in our case the domain is
of the form Ωε = {(x̄, xN ) : x̄ ∈ W,−1 < xN < gε(x̄)} and the oscillating boundary is
at the top of the domain.

Proof of Theorem 8.53. The proof of (8.54) for smooth test functions ψ follows by
passing to the limit in equation (8.43) and combining (8.43)-(8.48). The general case
involving test functions ψ ∈ L2(W,w2,2

PerY
(Y × (−∞, 0))) follows by an approximation

argument which we skip for brevity (we only mention that in order to preserve the
boundary condition at yN = 0, one can first extend a given test function ψ by setting
ψ(x̄, ȳ,−yN ) = −ψ(x̄, ȳ, yN ) and then using convolution).

We now prove (8.55). Let U
(i)
ε =

(
0, . . . , 0,− ∂vε

∂xN
, 0, . . . , 0, ∂vε∂xi

)
be the vector as in

(7.9) for any i = 1, . . . , N − 1. We are going to apply Lemma 8.56 to the sequence

U
(i)
ε , which, as already noted, satisfies U

(i)
ε · ν = 0 on Γε where ν is the normal to the

boundary.
Observe that, for all j = 1, . . . , N , we have

∂̂vε
∂xj

(x̄, y)−
∫
Y

∂̂vε
∂xj

(x̄, ȳ, 0)dȳ

√
ε

=

∂v̂ε
∂yj

(x̄, y)−
∫
Y

∂v̂ε
∂yj

(x̄, ȳ, 0)dȳ

ε3/2
= ε−3/2∂Vε

∂yj
(8.59)

where Vε is the function defined by (8.10). By Lemma 8.9 (a), it follows that

∂̂vε
∂xj

(x̄, y)−
∫
Y

∂̂vε
∂xj

(x̄, ȳ, 0)dȳ

√
ε

ε→0
⇀

∂v̂

∂yj
(8.60)

in L2(W × Y × (d, 0)) for any d < 0.
Applying Lemma 8.56, we get

∂v̂

∂yi
(x̄, ȳ, 0) = ∇b(ȳ) ·

(
0, . . . , 0,− ∂v

∂xN
(x̄, 0), 0, . . . , 0,

∂v

∂xi
(x̄, 0)

)
= − ∂b

∂yi
(ȳ)

∂v

∂xN
(x̄, 0)

which proves (8.55). 2

We plan now to describe function v̂ in a more explicit way by separating the variables
x̄ and y and providing a classical formulation of the microscopic problem (8.54). To do
so, we shall also need to perform some calculations based on standard integration by
parts on domains of the type Y ×(d, 0) with d < 0. In essence, the computations are the
same computations required to prove a known Green-type formula for the biharmonic
operator. For the sake of clarity, we state such formula and we provide a short proof in
the classical setting. We recall that, given a smooth open set U and a smooth vector field
F : ∂U → RN , the tangential divergence of F is defined by div∂UF = divF − (∇F · ν)ν
where it is meant that the vector field F is extended smoothly in a neighborhood of
∂U . In the following statement, we shall also denote by F∂U the tangential component
of a vetor field F as above, defined by F∂U = F − (F · ν)ν.
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Lemma 8.61 (Biharmonic Green Formula) Let U be a bounded open set in RN
of class C0,1. Let f ∈ C4(Ū) and ϕ ∈ C2(Ū). Then

∫
U
D2f : D2ϕdy =

∫
U

∆2fϕdy −
∫
∂U

∂∆f

∂ν
ϕdσ +

∫
∂U

∂2f

∂ν2

∂ϕ

∂ν
dσ

+

∫
∂U

(D2f · ν)∂U · ∇∂Uϕdσ. (8.62)

Moreover, if Ω is also of class C2 then∫
U
D2f : D2ϕdy =

∫
U

(∆2f)ϕdy+

∫
∂U

∂2f

∂ν2

∂ϕ

∂ν
dσ−

∫
∂U

(
div∂U ((D2f) · ν)∂U +

∂∆f

∂ν

)
ϕdσ.

(8.63)

Proof. Standard integration by parts gives∫
U
D2f : D2ϕdy =

∫
U

∂2f

∂yi∂yj

∂2ϕ

∂yi∂yj
dy = −

∫
U

∂3f

∂y2
i ∂yj

∂ϕ

∂yj
dy +

∫
∂U

∂2f

∂yi∂yj

∂ϕ

∂yj
νidy

=

∫
U

∆f∆ϕdy −
∫
∂U

∆f
∂ϕ

∂ν
dσ +

∫
∂U

(D2f · ν)∇ϕdσ ,

(8.64)

where summation symbols have been dropped. Formula (8.62) simply follows by the
standard Green formula and by decomposing ∇ϕ as ∇∂Uϕ + ∂ϕ

∂ν ν in (8.64). Finally,
formula (8.63) follows by applying the Tangential Green Formula (see, e.g., Delfour and
Zolesio [23, §5.5]) to the last integral in the right-hand side of (8.62). 2

We also need the following lemma where by W 4,2
PerY

(Y × (d, 0)) we denote the space

of functions in W 4,2
loc (RN × (d, 0)) Y -periodic in the first (N − 1)-variables ȳ and such

that all derivatives up to the fourth order are square summable in Y × (d, 0).

Lemma 8.65 There exists V ∈ w2,2
PerY

(Y × (−∞, 0)) satisfying the equation∫
Y×(−∞,0)

D2V : D2ψdy = 0, (8.66)

for all ψ ∈ w2,2
PerY

(Y × (−∞, 0)) with ψ(ȳ, 0) = 0 on Y , and the boundary condition

V (ȳ, 0) = b(ȳ), on Y. (8.67)

Function V is unique up to the sum of a monomial of the type ayn where a is any real
number.

Moreover, V is of class W 4,2
PerY

(Y × (d, 0)) for any d < 0, ∆2V = 0 and it satisfies
the boundary condition

∂2V

∂ν2
(ȳ, 0) = 0, on Y. (8.68)

Proof. In order to prove the existence of V , we use a standard direct method in
the Calculus of Variations. Let A = {V ∈ w2,2

PerY
(Y × (−∞, 0)) : V (ȳ, 0) = b(ȳ) on Y }.

Obviously, A 6= ∅. It is clear that a minimizer (if it exists) for the problem

inf
V ∈A

∫
Y×(−∞,0)

|D2V |2dy (8.69)
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is a solution to problem (8.66) and satisfies the required boundary condition (see also
Lemma 8.61). Thus it suffices to prove that there exists a minimizer in (8.69). Let
Vn ∈ A, n ∈ N be a minimizing sequence for (8.69). Since this sequence is bounded in
w2,2
PerY

(Y × (−∞, 0)) there exists Ṽ ∈ w2,2
PerY

(Y × (−∞, 0)) such that D2Vn converges

weakly to D2Ṽ in L2(Y × (−∞, 0)). Since the trace operator is compact we have
that Vn(ȳ, 0) converges strongly to Ṽ (ȳ, 0) in L2(Y ), hence Ṽ (ȳ, 0) = b(ȳ) on Y and
V ∈ A. We now prove that Ṽ is in fact a minimizer. By the elementary inequality
|α|2 ≥ |β|2 + 2β · (α− β) valid for all vectors α, β in any Euclidean space, we get∫

Y×(−∞,0)
|D2Vn|2dy ≥

∫
Y×(−∞,0)

|D2Ṽ |2dy + 2

∫
Y×(−∞,0)

D2Ṽ : (D2Vn −D2Ṽ )dy.

Passing to the limit in the previous inequality, using the weak convergence and the fact
that the sequence is minimizing in (8.69), we find out that

inf
u∈A

∫
Y×(−∞,0)

|D2V |2dy =

∫
Y×(−∞,0)

|D2Ṽ |2dy,

hence Ṽ is a minimizer.
Uniqueness is easily proved by observing that if V ∈ w2,2

PerY
(Y × (−∞, 0)) satisfies

equation (8.66) and the boundary condition V (ȳ, 0) = 0 on Y , then V itself can be tested
in (8.66), and it easily follows that D2V = 0. This implies that V is a polynomial of
the first degree of the type

∑N
j=1 ajyj . By the periodicity in ȳ we get aj = 0 for all

j = 1, . . . , N − 1 and the proof of the first part of the statement is complete.
Regularity of V is standard. The rest of the proof follows by using in the weak

formulation (8.66) test functions ψ as in the statement, with bounded support in the
yN -direction and using formula (8.62). In fact, using such test functions ψ, we get that
the boundary terms corresponding to the subset ∂Y × (−∞, 0) of the boundary cancel
out because of periodicity, hence∫

Y×(−∞,0)
D2V : D2ψdy =

∫
Y×(−∞,0)

(∆2V )ψdy +

∫
Y

∂2V

∂ν2

∂ψ

∂ν
dσ = 0.

By the previous formula and the arbitrary choice of ψ we deduce that V is biharmonic
and satisfies the boundary condition (8.68). 2

Lemma 8.70 Let V be as in Lemma 8.65. Then∫
Y×(−1,0)

D2V : D2(b(ȳ)(1+yN )3)dy =

∫
W×]−∞,0[

|D2V |2dy = −
∫
Y
b
∂

∂yN
(∆ȳV+∆V )dȳ.

(8.71)

Proof. Let ψ̃ be the real-valued function defined on Y×]−∞, 0[ by

ψ̃(y) =

{
b(ȳ)(1 + yN )3, if (ȳ, yN ) ∈ Y × [−1, 0),
0, if (ȳ, yN ) ∈ Y×]−∞,−1).

Clearly, ψ̃ ∈ w2,2
PerY

(Y ×(−∞, 0))) and ψ̃(ȳ, 0) = V (ȳ, 0). The proof of the first equality

in (8.71) then easily follows by using ψ = V − ψ̃ as a test function in (8.66).
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In order to prove the second equality in (8.71), we use formula (8.62) with U =
Y × (−1, 0), f = V and ϕ(ȳ, yN ) = b(ȳ)(1 + yN )3. First of all, we note that

((D2f) · ν)∂U = ∇ȳ
(
∂V

∂yN

)
on the part of the boundary given by Y × {0}. Then by Lemma 8.65 and formula
(8.62), by exploiting the periodicity of V and b which allows to get rid of the boundary
terms corresponding to the subset of the boundary ∂Y × (−1, 0), we have that∫
Y×(−1,0)

D2V : D2(b(ȳ)(1 + yN )3)dy =

∫
Y
∇ȳ
(
∂V (ȳ, 0)

∂yN

)
· ∇ȳb(ȳ)dȳ −

∫
Y
b
∂∆v

∂yN
dȳ.

Integrating by parts the right-hand side of the previous equality and using again the
periodicity of the functions we conclude. 2

Finally, we can prove the following

Theorem 8.72 Let V be as in Lemma 8.65. Let v, v̂ be the functions defined in
Theorem 8.40. Then v̂(x̄, y) = −V (y) ∂v

∂xN
(x̄, 0) + a(x̄)yN for almost all (x̄, y) ∈

W × Y×]−∞, 0] where a(·) ∈ L2(W ) is a function depending only on x̄.
Moreover, for the strange term in (8.41) we have∫

W

∫
Y×(−1,0)

D2
y v̂(x̄, y) : D2

y(b(ȳ)(1 + yN )3)dy
∂ϕ

∂xN
(x̄, 0)dx̄

= −
∫
W×]−∞,0[

|D2V |2dy
∫
W

∂v

∂xN
(x̄, 0)dx̄

∂ϕ

∂xN
(x̄, 0)dx̄

= −γ
∫
W

∂v

∂xN
(x̄, 0)dx̄

∂ϕ

∂xN
(x̄, 0)dx̄, (8.73)

where γ is defined in (7.5).

Proof. Recall that function v̂ satisfies problem (8.54) and the boundary condition
(8.55). By proceeding exactly as in the proof of Lemma 8.65 one can easily see that
such function v̂ is unique up to the sum of a function of the type a(x̄)yN as in the
statement. The proof then follows simply by observing that a function of the type
−V (y) ∂v

∂xN
(x̄, 0) as in the statement satisfies problem (8.54) and the boundary condi-

tion (8.55). Equality (8.73) follows by (8.71). 2
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