6,025 research outputs found
Seeded gas thrusters and related system components
A program involved with the construction and test of a number of laser heated thrusters is described. These thrusters, with a cavity approximately 23 cm long and 3.5 cm in i.d., are to be tested by NASA at a later date with a laser beam focused through the throat to heat hydrogen propellant containing an opacifier. The heated propellant exhausts through a supersonic nozzle with a 0.6 cm throat at 3000 C. Thrust stands and control systems were furnished with the thrusters. The report describes radio frequency plasma heated hot and cold flow simulation tests by the contractor
Induction plasma heating - System performance, hydrogen operation and gas core reactor simulator development
Induction plasma heating system for hydrogen-argon simulated gas cooled reactor studie
Production of superheated hydrogen plasma using induction heating of cold plasma and dc plasma enhancement
Production of superheated hydrogen plasma by induction heating of cold plasma and direct current plasma enhancemen
Plasma-heating by induction
Induction-heated plasma torch operates with an input of 1 Mw of direct current of which 71 percent is transferred to the plasma and the remainder is consumed by electrical losses in the system. Continuous operation of the torch should be possible for as long as 5,000 hours
Simulator test to study hot-flow problems related to a gas cooled reactor
An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen
Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy
Rigidity transitions and constraint counting in amorphous networks: beyond the mean-field approach
Subj-class: Disordered Systems and Neural NetworksComment: 12 pages, revtex, 3 figure
A New Methodology for Developing A Self-Report Psychodiversity Questionnaire: Update and Future Directions For A Work in Progress
A novel self-report methodology for the construction of a multidimensional questionnaire measure of psychodiversity is described and preliminary findings from three exploratory studies examining construct validity in relation to indices of well-being are discussed. Arising from these empirical endeavours, the notion of metamotivational state specific psychodiversity is proposed. The need for additional item generation for the combined alloic-autic and masterysympathy pairs is acknowledged. Suggestions are made for further research developing and using the resultant measure both within and beyond Reversal Theory
Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process
Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles
Kinetic glass behavior in a diffusive model
Three properties of the Edwards-Anderson model with mobile bonds are
investigated which are characteristic of kinetic glasses. First is two-time
relaxation in aged systems, where a significant difference is observed between
spin and bond autocorrelation functions. The spin subsystem does not show
two-time behavior, and the relaxation is stretched exponential. The bond
subsystem shows two-time behavior, with the first relaxation nearly exponential
and the second similar to the spin one. Second is the two-temperature behavior,
which can be tuned by bond dilution through the full range reported in the
literature. Third is the rigid-to-floppy transition, identified as a function
of bond dilution. Simple Glauber Monte Carlo evolution without extraneous
constraints reproduces the behavior of classical kinetic simulations, with the
bond (spin) degree of freedom corresponding to configurational (orientational)
disorder.Comment: 4 pages, 3 figures, minimal corrections, to appear in Phys. Rev. B
(RC
- …