11,952 research outputs found

    Modeling and identification of SCOLE

    Get PDF
    Vector differential equations for distributed structures; discretization (in space) of distributed structures; and parameter identification for the Spacecraft Control Laboratory Experiment (SCOLE) are examined

    Identification and control of structures in space

    Get PDF
    The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration

    Comment on "Self-Purification in Semiconductor Nanocrystals"

    Full text link
    In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed that formation energies of Mn impurities in CdSe nanocrystals increase as the size of the nanocrystal decreases, and argued that this size dependence leads to "self-purification" of small nanocrystals. They presented density-functional-theory (DFT) calculations showing a strong size dependence for Mn impurity formation energies, and proposed a general explanation. In this Comment we show that several different DFT codes, pseudopotentials, and exchange-correlation functionals give a markedly different result: We find no such size dependence. More generally, we argue that formation energies are not relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur

    Effective speed of sound in phononic crystals

    Full text link
    A new formula for the effective quasistatic speed of sound cc in 2D and 3D periodic materials is reported. The approach uses a monodromy-matrix operator to enable direct integration in one of the coordinates and exponentially fast convergence in others. As a result, the solution for cc has a more closed form than previous formulas. It significantly improves the efficiency and accuracy of evaluating cc for high-contrast composites as demonstrated by a 2D example with extreme behavior.Comment: 4 pages, 1 figur

    Constraints on Association of Single-pulse Gamma-ray Bursts and Supernovae

    Get PDF
    We explore the hypothesis, similar to one recently suggested by Bloom and colleagues, that some nearby supernovae are associated with smooth, single-pulse gamma-ray bursts, possibly having no emission above ~ 300 keV. We examine BATSE bursts with durations longer than 2 s, fitting those which can be visually characterized as single-pulse events with a lognormal pulse model. The fraction of events that can be reliably ascertained to be temporally and spectrally similar to the exemplar, GRB 980425 - possibly associated with SN 1998bw - is 4/1573 or 0.25%. This fraction could be as high as 8/1573 (0.5%) if the dimmest bursts are included. Approximately 2% of bursts are morphologically similar to GRB 980425 but have emission above ~ 300 keV. A search of supernova catalogs containing 630 detections during BATSE's lifetime reveals only one burst (GRB 980425) within a 3-month time window and within the total 3-sigma BATSE error radius that could be associated with a type Ib/c supernova. There is no tendency for any subset of single-pulse GRBs to fall near the Supergalactic Plane, whereas SNe of type Ib/c do show this tendency. Economy of hypotheses leads us to conclude that nearby supernovae generally are not related to smooth, single-pulse gamma-ray bursts.Comment: 25 pages, 5 figure

    The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses

    Full text link
    In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least ∼\sim4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy (EpE_{p}) in the νfν\nu f_{\nu} spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Calcineurin and glial signaling: Neuroinflammation and beyond

    Get PDF
    Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However, newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid production suggest that CN\u27s influence in glia may extend well beyond neuroinflammation. The following review will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease

    Compact Radio Cores in Seyfert Galaxies

    Full text link
    We have observed a sample of 157 Seyfert galaxies with a 275 km baseline radio interferometer to search for compact, high brightness temperature radio emission from the active nucleus. We obtain the surprising result that compact radio cores are much more common in Seyfert 2 than in Seyfert 1 galaxies, which at first seems to be inconsistent with orientation unification schemes. We propose a model, involving optical depth effects in the narrow-line region, which can reconcile our result with the standard unified scheme. (Accepted for publication in ApJ 1994 Sep 10)Comment: 21 pages and 7 figures, uuencoded tar-compressed postscript files, ATP18

    The Impact of COVID-19 on Physical Activity and Sedentary Behavior in Children: A Pilot Study

    Get PDF
    Click the PDF icon to download the abstrac
    • …
    corecore