26 research outputs found

    Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system

    Get PDF
    Background Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T. gondii type II-specific dense granule protein 15, TgGRA15, which activates NF-κB pathway. The aim of the present study was to identify the host interaction partner proteins of TgGRA15. Methods We screened a yeast two-hybrid mouse cDNA library using TgGRA15 as the bait. TgGRA15 (PRU strain, Type II) was cloned into the pGBKT7 vector and expressed in the Y2HGold yeast strain. Then, the bait protein expression was validated by western blotting analysis, followed by auto-activation and toxicity tests in comparison with control (Y2HGold yeast strain transformed with empty pGBKT7 vector). Results This screening led to the identification of mouse Luzp1 and AW209491 as host binding proteins that interact with TgGRA15. Luzp1 contains three nuclear localizing signals and is involved in regulating a subset of host non-coding RNA genes. Conclusions These findings reveal, for the first time, new host cell proteins interacting with TgGRA15. The identification of these cellular targets and the understanding of their contribution to the host-pathogen interaction may serve as the foundation for novel therapeutic and prevention strategies against T. gondii infection

    Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages

    Get PDF
    Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio

    Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15

    Get PDF
    Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host’s immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby Hamster Kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15I) or type II PRU strain (GRA15II). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15I and GRA15II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15II was mainly involved in the regulation of Tumor Necrosis Factor (TNF), NF-κB, HTLV-I infection and NOD-like receptor signaling pathways. GRA15I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain-dependent; and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors, would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis
    corecore