15,819 research outputs found

    Cluster induced quenching of galaxies in the massive cluster XMMXCSJ2215.9-1738 at z~1.5 traced by enhanced metallicities inside half R200

    Full text link
    (Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to about one virial radius. Using published spectroscopic redshifts of 108 galaxies in and around the cluster we computed the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a virialized region of objects accreted longer ago (roughly inside half R200) and a region of infalling galaxies. We measured oxygen abundances for ten cluster galaxies with detected [NII] lines in the individual galaxy spectra and compared the MZR of the galaxies inside half R200 with the infalling galaxies and a field sample at similar redshifts. We find that the oxygen abundances of individual z~1.5 star-forming cluster galaxies inside half R200 are comparable, at the respective stellar mass, to the higher local SDSS metallicity values. We find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex and that the resultant metallicities of the galaxies in the inner part of the cluster are higher by about 0.1 dex, at a given mass, than the metallicities of infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities of cluster galaxies at z~1.5 inside half R200 indicate that the density of the ICM in this massive cluster becomes high enough toward the cluster center such that the ram pressure exceeds the restoring pressure of the hot gas reservoir of cluster galaxies. This can remove the gas reservoir initiating quenching; although the galaxies continue to form stars, albeit at slightly lower rates, using the available cold gas in the disk which is not stripped.Comment: Accepted for publication in A&

    The Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance

    Full text link
    We study the trajectories followed by a particle subjected to weak noise when escaping from the domain of attraction of a stable fixed point. If detailed balance is absent, a _focus_ may occur along the most probable exit path, leading to a breakdown of symmetry (if present). The exit trajectory bifurcates, and the exit location distribution may become `skewed' (non-Gaussian). The weak-noise asymptotics of the mean escape time are strongly affected. Our methods extend to the study of skewed exit location distributions in stochastic models without symmetry.Comment: REVTEX macros (latest version). Two accompanying PS figures, one of which is large (over 600K unpacked

    Kinematics of disk galaxies in (proto-)clusters at z=1.5

    Full text link
    We observed star-forming galaxies at z~1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [OII] emitters identified via narrow-band imaging and photometric redshifts from grizy photometry. We used VLT/KMOS to carry out Halpha integral field spectroscopy of 46 galaxies in total. Ionized gas maps, star formation rates and velocity fields were derived from the Halpha emission line. We quantified morphological and kinematical asymmetries to test for potential gravitational (e.g. galaxy-galaxy) or hydrodynamical (e.g. ram-pressure) interactions. Halpha emission was detected in 36 targets. 34 of the galaxies are members of two (proto-)clusters at z=1.47, confirming our selection strategy to be highly efficient. By fitting model velocity fields to the observed ones, we determined the intrinsic maximum rotation velocity Vmax of 14 galaxies. Utilizing the luminosity-velocity (Tully-Fisher) relation, we find that these galaxies are more luminous than their local counterparts of similar mass by up to ~4 mag in the rest-frame B-band. In contrast to field galaxies at z<1, the offsets of the z~1.5 (proto-)cluster galaxies from the local Tully-Fisher relation are not correlated with their star formation rates but with the ratio between Vmax and gas velocity dispersion sigma_g. This probably reflects that, as is observed in the field at similar redshifts, fewer disks have settled to purely rotational kinematics and high Vmax/sigma_g ratios. Due to relatively low galaxy velocity dispersions (sigma_v < 400 km/s) of the (proto-)clusters, gravitational interactions likely are more efficient, resulting in higher kinematical asymmetries, than in present-day clusters. (abbr.)Comment: Accepted for publication in A&A. 11 pages, 8 figures, 1 tabl

    Rotating system for four-dimensional transverse rms-emittance measurements

    Full text link
    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.Comment: 11 pages, 10 figure

    Specific heat studies of pure Nb3Sn single crystals at low temperature

    Full text link
    Specific heat measurements performed on high purity vapor-grown Nb3_3Sn crystals show clear features related to both the martensitic and superconducting transitions. Our measurements indicate that the martensitic anomaly does not display hysteresis, meaning that the martensitic transition could be a weak first or a second order thermodynamic transition. Careful measurements of the two transition temperatures display an inverse correlation between both temperatures. At low temperature specific heat measurements show the existence of a single superconducting energy gap feature.Comment: Accepted in Journal of Physics: Condensed Matte

    Off-resonance field enhancement by spherical nanoshells

    Full text link
    We study light scattering by spherical nanoshells consistent of metal/dielectric composites. We consider two geometries of metallic nanoshell with dielectric core, and dielectric coated metallic nanoparticle. We demonstrate that for both geometries the local field enhancement takes place out of resonance regions ("dark states"), which, nevertheless, can be understood in terms of the Fano resonance. At optimal conditions the light is stronger enhanced inside the dielectric material. By using nonlinear dielectric materials it will lead to a variety nonlinear phenomena applicable for photonics applications

    Entropy-driven enhanced self-diffusion in confined reentrant supernematics

    Full text link
    We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S≃1S\simeq1. Along the nematic director these "supernematic" phases exhibit a remarkably high self-diffusivity which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.Comment: 10 pages, 5 figure
    • …
    corecore