11,400 research outputs found

    A Quantum Yield Map for Synthetic Eumelanin

    Get PDF
    The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the specific quantum yield: the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein.Comment: 10 pages, 6 figure

    Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations

    Full text link
    The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This paper presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.Comment: 4 pages, 1 figur

    Topological phase for entangled two-qubit states and the representation of the SO(3)group

    Full text link
    We discuss the representation of the SO(3)SO(3) group by two-qubit maximally entangled states (MES). We analyze the correspondence between SO(3)SO(3) and the set of two-qubit MES which are experimentally realizable. As a result, we offer a new interpretation of some recently proposed experiments based on MES. Employing the tools of quantum optics we treat in terms of two-qubit MES some classical experiments in neutron interferometry, which showed the π\pi -phase accrued by a spin-1/21/2 particle precessing in a magnetic field. By so doing, we can analyze the extent to which the recently proposed experiments - and future ones of the same sort - would involve essentially new physical aspects as compared with those performed in the past. We argue that the proposed experiments do extend the possibilities for displaying the double connectedness of SO(3)SO(3), although for that to be the case it results necessary to map elements of SU(2)SU(2) onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure

    The Absence of Extra-Tidal Structure in the Sculptor Dwarf Spheroidal Galaxy

    Full text link
    The results of a wide-field survey of the Sculptor dwarf spheroidal galaxy are presented. Our aims were to obtain an accurate map of the outer structure of Sculptor, and to determine the level of interaction between this system and the Galaxy. Photometry was obtained in two colours down to the magnitude limits of V=20 and I=19, covering a 3.1 times 3.1 square deg area centred on Sculptor. The resulting colour-magnitude data were used as a mask to select candidate horizontal branch and red giant branch stars for this system. Previous work has shown that the red horizontal branch (HB) stars are more concentrated than the blue HB stars. We have determined the radial distributions of these two populations and show that the overall Sculptor density profile is well described by a two component model based on a combination of these radial distributions. Additionally, spectra of the Ca ii triplet region were obtained for over 700 candidate red giant stars over the 10 square deg region using the 2dF instrument on the Anglo-Australian Telescope. These spectra were used to remove foreground Galactic stars based on radial velocity and Ca ii triplet strength. The final list of Sculptor members contained 148 stars, seven of which are located beyond the nominal tidal radius. Both the photometric and spectroscopic datasets indicate no significant extra-tidal structure. These results support at most a mild level of interaction between this system and the Galaxy, and we have measured an upper mass limit for extra-tidal material to be 2.3 +/- 0.6% of the Sculptor luminous mass. This lack of tidal interaction indicates that previous velocity dispersion measurements (and hence the amount of dark matter detected) in this system are not strongly influenced by the Galactic tidal field.Comment: 53 pages, 23 figures. Accepted for publication in the Astronomical Journal. Some figures are reduced in size, and a full version is available at: ftp://ftp.mso.anu.edu.au/pub/coleman/sculptor.pd

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio

    Changes in Body Measurements of Heifers at First Parturition

    Get PDF
    Author Institution: Department of Dairy Science, Ohio Agricultural Experiment Station, Wooste

    Quantum-to-Classical Correspondence and Hubbard-Stratonovich Dynamical Systems, a Lie-Algebraic Approach

    Full text link
    We propose a Lie-algebraic duality approach to analyze non-equilibrium evolution of closed dynamical systems and thermodynamics of interacting quantum lattice models (formulated in terms of Hubbard-Stratonovich dynamical systems). The first part of the paper utilizes a geometric Hilbert-space-invariant formulation of unitary time-evolution, where a quantum Hamiltonian is viewed as a trajectory in an abstract Lie algebra, while the sought-after evolution operator is a trajectory in a dynamic group, generated by the algebra via exponentiation. The evolution operator is uniquely determined by the time-dependent dual generators that satisfy a system of differential equations, dubbed here dual Schrodinger-Bloch equations, which represent a viable alternative to the conventional Schrodinger formulation. These dual Schrodinger-Bloch equations are derived and analyzed on a number of specific examples. It is shown that deterministic dynamics of a closed classical dynamical system occurs as action of a symmetry group on a classical manifold and is driven by the same dual generators as in the corresponding quantum problem. This represents quantum-to-classical correspondence. In the second part of the paper, we further extend the Lie algebraic approach to a wide class of interacting many-particle lattice models. A generalized Hubbard-Stratonovich transform is proposed and it is used to show that the thermodynamic partition function of a generic many-body quantum lattice model can be expressed in terms of traces of single-particle evolution operators governed by the dynamic Hubbard-Stratonovich fields. Finally, we derive Hubbard-Stratonovich dynamical systems for the Bose-Hubbard model and a quantum spin model and use the Lie-algebraic approach to obtain new non-perturbative dual descriptions of these theories.Comment: 25 pages, 1 figure; v2: citations adde

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure

    Infinite S-expansion with ideal subtraction and some applications

    Get PDF
    According to the literature, the S-expansion procedure involving a finite semigroup is valid no matter what the structure of the original Lie (super)algebra is; however, when something about the structure of the starting (super)algebra is known and when certain particular conditions are met, the S-expansion method (with its features of resonance and reduction) is able not only to lead to several kinds of expanded (super)algebras but also to reproduce the effects of the standard as well as the generalized Inönü-Wigner contraction. In the present paper, we propose a new prescription for S-expansion, involving an infinite abelian semigroup S^(∞) and the subtraction of an infinite ideal subalgebra. We show that the subtraction of the infinite ideal subalgebra corresponds to a reduction. Our approach is a generalization of the finite S-expansion procedure presented in the literature, and it offers an alternative view of the generalized Inönü-Wigner contraction. We then show how to write the invariant tensors of the target (super)algebras in terms of those of the starting ones in the infinite S-expansion context presented in this work. We also give some interesting examples of application on algebras and superalgebras
    • …
    corecore