15,404 research outputs found

    Boundary Condition of Polyelectrolyte Adsorption

    Full text link
    The modification of the boundary condition for polyelectrolyte adsorption on charged surface with short-ranged interaction is investigated under two regimes. For weakly charged Gaussian polymer in which the short-ranged attraction dominates, the boundary condition is the same as that of the neutral polymer adsorption. For highly charged polymer (compressed state) in which the electrostatic interaction dominates, the linear relationship (electrostatic boundary condition) between the surface monomer density and the surface charge density needs to be modified.Comment: 4 page

    Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    Get PDF
    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided

    The automorphism group of separable states in quantum information theory

    Get PDF
    We show that the linear group of automorphism of Hermitian matrices which preserves the set of separable states is generated by \emph{natural} automorphisms: change of an orthonormal basis in each tensor factor, partial transpose in each tensor factor, and interchanging two tensor factors of the same dimension. We apply our results to preservers of the product numerical range.Comment: 15 page

    SCOZA for Monolayer Films

    Full text link
    We show the way in which the self-consistent Ornstein-Zernike approach (SCOZA) to obtaining structure factors and thermodynamics for Hamiltonian models can best be applied to two-dimensional systems such as thin films. We use the nearest-neighbor lattice gas on a square lattice as an illustrative example.Comment: 10 pages, 5 figure

    A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution

    Full text link
    We discuss excess noise contributions of a practical balanced homodyne detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator. A high speed balanced homodyne detector suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3dB bandwidth of the balanced homodyne detector is found to be 104MHz and its electronic noise level is 13dB below the shot noise at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits/s over a few kilometers.Comment: 22 pages, 11 figure

    Student understanding of rotational and rolling motion concepts

    Full text link
    We investigated the common difficulties that students have with concepts related to rotational and rolling motion covered in the introductory physics courses. We compared the performance of calculus- and algebra-based introductory physics students with physics juniors who had learned rotational and rolling motion concepts in an intermediate level mechanics course. Interviews were conducted with six physics juniors and ten introductory students using demonstration-based tasks. We also administered free-response and multiple-choice questions to a large number of students enrolled in introductory physics courses, and interviewed six additional introductory students on the test questions (during the test design phase). All students showed similar difficulties regardless of their background, and higher mathematical sophistication did not seem to help acquire a deeper understanding. We found that some difficulties were due to related difficulties with linear motion, while others were tied specifically to the more intricate nature of rotational and rolling motion.Comment: 23 pages, 3 figures, 2 tables; it includes a multiple-choice test (in Appendix B

    The Impact of Innovative Executive Servant Leadership on Organizational Citizenship, and Organizational Cynicism

    Get PDF
    Have you ever wondered how your employees complained to their friends about how things happened in your organization? The most challenging part for Servant Leadership is to reduce organizational cynicism and nurture organizational citizenship. The major research interest for this study was to discover whether the bottom-up servant leadership theory to “serve” first and “lead” second can be truly practiced by the president of a university and whether it is valid and effective in reducing employee’s organizational cynicism and enhancing employee’s organizational citizenship. The results showed that the goodness of fit (GFI) was good and sufficient and adequate. The null hypotheses were rejected significantly. Conversely, this study’s findings demonstrate empirically that leader-follower relationships and employee cynicism and non-citizenship problems are closely associated with servant leadership in terms of the leader’s vision, philosophy, attitudes, behaviors, and management policy in the areas of interpersonal support, building community, altruism, egalitarianism, and moral integrity

    Spectral properties and magneto-optical excitations in semiconductor double-rings under Rashba spin-orbit interaction

    Full text link
    We have numerically solved the Hamiltonian of an electron in a semiconductor double ring subjected to the magnetic flux and Rashba spin-orbit interaction. It is found that the Aharonov-Bohm energy spectrum reveals multi-zigzag periodic structures. The investigations of spin-dependent electron dynamics via Rabi oscillations in two-level and three-level systems demonstrate the possibility of manipulating quantum states. Our results show that the optimal control of photon-assisted inter-ring transitions can be achieved by employing cascade-type and Λ\Lambda-type transition mechanisms. Under chirped pulse impulsions, a robust and complete transfer of an electron to the final state is shown to coincide with the estimation of the Landau-Zener formula.Comment: RevTex, 9 pages, 5 figure

    The reinforcing influence of recommendations on global diversification

    Get PDF
    Recommender systems are promising ways to filter the overabundant information in modern society. Their algorithms help individuals to explore decent items, but it is unclear how they allocate popularity among items. In this paper, we simulate successive recommendations and measure their influence on the dispersion of item popularity by Gini coefficient. Our result indicates that local diffusion and collaborative filtering reinforce the popularity of hot items, widening the popularity dispersion. On the other hand, the heat conduction algorithm increases the popularity of the niche items and generates smaller dispersion of item popularity. Simulations are compared to mean-field predictions. Our results suggest that recommender systems have reinforcing influence on global diversification.Comment: 6 pages, 6 figure
    corecore