3,151 research outputs found

    Reverse remodeling in Dilated Cardiomyopathy: Insights and future perspectives

    Get PDF
    Dilated Cardiomyopathy (DCM) has been classically considered a progressive disease of the heart muscle that inexorably progresses towards refractory heart failure, ventricular arrhythmias and heart transplant. However, the prognosis of DCM has significantly improved in the past few years, mostly as the result of successful therapy-induced reverse remodeling. Reverse remodeling is a complex process that involves not only the left ventricle, but also many other cardiac structures and it is now recognized both as a measure of therapeutic effectiveness and as an important prognostic tool. Nevertheless, several aspects of reverse remodeling remain unclear, including the best timing for its quantification, its predictors and its interaction with individual genetic backgrounds. In this review, we summarize our current understanding of reverse remodeling in patients with DCM and provide practical recommendations for the clinical management of this challenging patient population

    Experimental evidence of antiproton reflection by a solid surface

    Full text link
    We report here experimental evidence of the reflection of a large fraction of a beam of low energy antiprotons by an aluminum wall. This derives from the analysis of a set of annihilations of antiprotons that come to rest in rarefied helium gas after hitting the end wall of the apparatus. A Monte Carlo simulation of the antiproton path in aluminum indicates that the observed reflection occurs primarily via a multiple Rutherford-style scattering on Al nuclei, at least in the energy range 1-10 keV where the phenomenon is most visible in the analyzed data. These results contradict the common belief according to which the interactions between matter and antimatter are dominated by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure

    O2Activation over Ag-Decorated CeO2(111) and TiO2(110) Surfaces: A Theoretical Comparative Investigation

    Get PDF
    Periodic spin-polarized hybrid density functional theory calculations have been performed to investigate the reactivity of pristine, O-defective, and Ag-decorated CeO2(111) and TiO2(110) surfaces with a small Ag10 cluster toward O2. The adsorption of O2 and its subsequent dissociation have been studied in order to provide a better understanding of the role of the oxide, the metallic nanoparticle, and their interaction in the reactivity of composite metal/metal oxide materials toward O2, as potential catalysts to this reaction. Structural, energetic, electronic, and vibrational properties of all species involved in the different reaction paths considered have been fully characterized. On the stoichiometric surfaces, Ag10 is oxidized and reduces surface Ce4+/Ti4+ ions, while on the O-defective surfaces, the adhesion of silver is promoted only on CeO2 but unfavored on TiO2. On the other hand, on the silver-free supports, O2 strongly adsorbs at vacancies and preferentially reduces to peroxide. When no O vacancies are considered on the Ag10-decorated supports, the net positive charge on Ag10 actually prevents the adsorption and reduction of O2. Instead, when O vacancies are included, two reaction pathways are observed; oxygen molecules can weakly absorb on the silver cluster as a superoxide moiety or strongly adsorb at the vacancy as peroxide. The dissociation of the O-O bond of the peroxide is favored both from the thermodynamic and kinetic points of view in silver-decorated surfaces, in contrast with the silver-free cases. In addition, Ag10/CeO2 shows higher activity toward the O2 adsorption and dissociation than Ag10/TiO2, which can be related both to the higher ionicity and superior electron storage/release ability of ceria with respect to titania, thus leading to the weakening of the O-O bond and providing lower activation barriers for oxygen reduction. These results deepen the current understanding of the reactivity of metal/metal oxide composites toward O2, especially elucidating how the surface stoichiometry affects the charge state of the metal clusters, and hence the reactivity of these interfaces toward O2, with potential important consequences when such composites are considered for catalytic applications

    Mars Regolith Simulant Ameliorated by Compost as In Situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects

    Get PDF
    Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova®) were chosen to be cultivated in four dierent mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use eciency and quality traits of lettuce. In particular, red Salanova® showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture

    Spin and Center of Mass in Axially Symmetric Einstein-Maxwell Spacetimes

    Full text link
    We give a definition and derive the equations of motion for the center of mass and angular momentum of an axially symmetric, isolated system that emits gravitational and electromagnetic radiation. A central feature of this formulation is the use of Newman-Unti cuts at null infinity that are generated by worldlines of the spacetime. We analyze some consequences of the results and comment on the generalization of this work to general asymptotically flat spacetimes.Comment: 20 page

    Potentially toxic element availability and risk assessment of cadmium dietary exposure after repeated croppings of brassica juncea in a contaminated agricultural soil

    Get PDF
    Phytoextraction of potentially toxic elements (PTEs) is eco-friendly and cost-effective for remediating agricultural contaminated soils, but plants can only take up bioavailable forms of PTEs, thus meaning that bioavailability is the key for the feasibility of this technique. With the aims to assess the phytoextraction efficiency on an agricultural soil contaminated by Cr, Zn, Cd, and Pb and the changes induced by plants in PTE bioavailability and in human health risk due to dietary exposure, in this work we carried out a mesocosm experiment with three successive croppings of Brassica juncea, each followed by Rocket salad as bioindicator. Brassica juncea extracted more Zn and Cd than Cr and Pb, significantly reducing, after three repeated croppings, the bioavailable element concentrations in soil as a result of plant uptake and soil pH changes. For Cd, this reduction did not bring the bioavailable amounts obtained by soil extraction with NH4NO3 below the trigger value of 0.1 mg kg−1 set by some European countries. Nevertheless, the Hazard Quotient for Cd in Rocket salad decreased across three repeated croppings of Brassica juncea. This indicated the beginning of a re-equilibration process between soil PTE forms of different bioavailability, that are in a dynamic equilibrium, thus stressing the need to monitor the possible regeneration of the most readily bioavailable pool

    Evidence for Environmentally Dependent Cluster Disruption in M83

    Full text link
    Using multi-wavelength imaging from the Wide Field Camera 3 on the Hubble Space Telescope we study the stellar cluster populations of two adjacent fields in the nearby face-on spiral galaxy, M83. The observations cover the galactic centre and reach out to ~6 kpc, thereby spanning a large range of environmental conditions, ideal for testing empirical laws of cluster disruption. The clusters are selected by visual inspection to be centrally concentrated, symmetric, and resolved on the images. We find that a large fraction of objects detected by automated algorithms (e.g. SExtractor or Daofind) are not clusters, but rather are associations. These are likely to disperse into the field on timescales of tens of Myr due to their lower stellar densities and not due to gas expulsion (i.e. they were never gravitationally bound). We split the sample into two discrete fields (inner and outer regions of the galaxy) and search for evidence of environmentally dependent cluster disruption. Colour-colour diagrams of the clusters, when compared to simple stellar population models, already indicate that a much larger fraction of the clusters in the outer field are older by tens of Myr than in the inner field. This impression is quantified by estimating each cluster's properties (age, mass, and extinction) and comparing the age/mass distributions between the two fields. Our results are inconsistent with "universal" age and mass distributions of clusters, and instead show that the ambient environment strongly affects the observed populations.Comment: 6 pages, 3 figures, MNRAS in pres

    A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters

    Get PDF
    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory and full near-ultraviolet to near-infrared photometric coverage make the LEGUS dataset excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B-V) (~0.03 mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16 figures, 9 table
    corecore